idealstan: Bayesian IRT Ideal Point Models with 'Stan'

Offers item-response theory (IRT) ideal-point scaling/dimension reduction methods that incorporate additional response categories and missing/censored values, including absences and abstentions, for roll call voting data (or any other kind of binary or ordinal item-response theory data). Full and approximate Bayesian inference is done via the 'Stan' engine (

Version: 0.2.7
Depends: R (≥ 3.1), Rcpp (≥ 0.12.7)
Imports: rstan (≥ 2.13.2), rstantools (≥ 1.1.0), methods (≥ 3.3.1), dplyr, tidyr, stringr, bayesplot, ggplot2, lazyeval, rlang, shinystan
LinkingTo: StanHeaders (≥ 2.13.1), rstan (≥ 2.13.2), BH (≥, Rcpp (≥ 0.12.7), RcppEigen (≥
Suggests: pscl, loo, knitr, rmarkdown
Published: 2018-02-09
Author: Robert Kubinec [aut, cre], Jonah Gabry [ctb], Ben Goodrich [ctb], Trustees of Columbia University [cph]
Maintainer: Robert Kubinec <rmk7xy at>
License: GPL-2 | GPL-3 [expanded from: GPL]
NeedsCompilation: yes
SystemRequirements: GNU make
CRAN checks: idealstan results


Reference manual: idealstan.pdf
Vignettes: How to Evaluate Models
Introduction to Idealstan
Package source: idealstan_0.2.7.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: idealstan_0.2.7.tgz
OS X Mavericks binaries: r-oldrel: not available


Please use the canonical form to link to this page.