amelie: Anomaly Detection with Normal Probability Functions

Implements anomaly detection as binary classification for cross-sectional data. Uses maximum likelihood estimates and normal probability functions to classify observations as anomalous. The method is presented in the following lecture from the Machine Learning course by Andrew Ng: <>, and is also described in: Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, Jaideep Srivastava (2003) <doi:10.1137/1.9781611972733.3>.

Version: 0.1.0
Imports: stats
Suggests: testthat, knitr, rmarkdown
Published: 2018-02-22
Author: Dmitriy Bolotov [aut, cre]
Maintainer: Dmitriy Bolotov <dbolotov at>
License: GPL (≥ 3)
NeedsCompilation: no
CRAN checks: amelie results


Reference manual: amelie.pdf
Vignettes: Introduction
Package source: amelie_0.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: amelie_0.1.0.tgz
OS X Mavericks binaries: r-oldrel: not available


Please use the canonical form to link to this page.