Package ‘MCMCglmm’

February 19, 2015

Title MCMC Generalised Linear Mixed Models
Version 2.21
Depends Matrix, coda, ape
Imports corpcor, tensorA
Suggests rgl, combinat, mvtnorm, orthopolynom
Date 2014-06-09
Author Jarrod Hadfield
Maintainer Jarrod Hadfield <j.hadfield@ed.ac.uk>
Description MCMC Generalised Linear Mixed Models
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-06-09 16:37:24

R topics documented:

MCMCglmm-package ... 2
at.level ... 3
at.set ... 4
BTdata ... 5
BTped ... 5
commutation ... 6
dcmvnorm ... 7
Ddivergence ... 8
Dexpressions ... 9
Dtensor .. 10
evalDtensor .. 11
gelman.prior .. 11
inverseA ... 13
knorm .. 14
KPPM ... 15
krzanowski.test 15
Description

MCMCglmm is a package for fitting Generalised Linear Mixed Models using Markov chain Monte Carlo techniques (Hadfield 2009). Most commonly used distributions like the normal and the Poisson are supported together with some useful but less popular ones like the zero-inflated Poisson and the multinomial. Missing values and left, right and interval censoring are accommodated for all traits. The package also supports multi-trait models where the multiple responses can follow different types of distribution. The package allows various residual and random-effect variance structures to be specified including heterogeneous variances, unstructured covariance matrices and random regression (e.g. random slope models). Three special types of variance structure that can be specified are those associated with pedigrees (animal models), phylogenies (the comparative method) and measurement error (meta-analysis).

The package makes heavy use of results in Sorensen & Gianola (2002) and Davis (2006) which taken together result in what is hopefully a fast and efficient routine. Most small to medium sized
problems should take seconds to a few minutes, but large problems (> 20,000 records) are possible. My interest is in evolutionary biology so there are also several functions for applying Rice’s (2004) tensor analysis to real data and functions for visualising and comparing matrices.

Please read the tutorial vignette("Tutorial", "MCMCglmm") or the course notes vignette("CourseNotes", "MCMCglmm")

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

`at.level` `Incidence Matrix of Levels within a Factor`

Description
Incidence matrix of levels within a factor

Usage
`at.level(x, level)`

Arguments
- `x` factor
- `level` factor level

Value
incidence matrix for level in x

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also
`at.set`
at.set

Incidence Matrix of Combined Levels within a Factor

Description

Incidence Matrix of Combined Levels within a Factor

Usage

at.set(x, level)

Arguments

x factor
level set of factor levels

Value

incidence matrix for the set level in x

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also

at.level

Examples

fac<-gl(3,10,30, labels=letters[1:3])
x<-rnorm(30)
model.matrix(~at.level(fac,"b")::x)

fac<-gl(3,10,30, labels=letters[1:3])
x<-rnorm(30)
model.matrix(~at.set(fac,2:3):x)
Blue Tit Data for a Quantitative Genetic Experiment

Description
Blue Tit (Cyanistes caeruleus) Data for a Quantitative Genetic Experiment

Usage
BTdata

Format
a data frame with 828 rows and 7 columns, with variables tarsus length (tarsus) and colour (back) measured on 828 individuals (animal). The mother of each is also recorded (dam) together with the foster nest (fosternest) in which the chicks were reared. The date on which the first egg in each nest hatched (hatchdate) is recorded together with the sex (sex) of the individuals.

References
Hadfield, J.D. et. al. 2007 Journal of Evolutionary Biology 20 549-557

See Also
BTped

Blue Tit Pedigree

Description
Blue Tit (Cyanistes caeruleus) Pedigree

Usage
BTped

Format
a data frame with 1040 rows and 3 columns, with individual identifier (animal) mother identifier (dam) and father identifier (sire). The first 212 rows are the parents of the 828 offspring from 106 full-sibling families. Parents are assumed to be unrelated to each other and have NA's in the dam and sire column.

References
Hadfield, J.D. et. al. 2007 Journal of Evolutionary Biology 20 549-557
See Also

BTped

commutation

Commutation Matrix

Description

Forms an \(mn \times mn \) commutation matrix which transforms \(\text{vec}(A) \) into \(\text{vec}(A') \), where \(A \) is an \(m \times n \) matrix.

Usage

```r
commutation(m, n)
```

Arguments

- \(m \)
 integer; number of rows of \(A \)

- \(n \)
 integer; number of columns of \(A \)

Value

Commutation Matrix

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Examples

```r
commutation(2,2)
```
Density of a (conditional) multivariate normal variate

Usage

dcmvnorm(x, mean = 0, V = 1, keep=1, cond=(1:length(x))[-keep], log=FALSE)

Arguments

x | vector of observations
mean | vector of means
V | covariance matrix
keep | vector of integers: observations for which density is required
cond | vector of integers: observations to condition on
log | if TRUE, density p is given as log(p)

Value

numeric

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

Examples

V1<-cbind(c(1,0.5), c(0.5,1))
dcmvnorm(c(0,2), c(0,0), V=V1, keep=1, cond=2)
density of x[1]=0 conditional on x[2]=2 given
x ~ MVN(c(0,0), V1)

dcmvnorm(c(0,2), c(0,0), V=V1, keep=1, cond=NULL)
density of x[1]=0 marginal to x[2]
dnorm(0,0,1)
same as univariate density

V2<-diag(2)
dcmvnorm(c(0,2), c(0,0), V=V2, keep=1, cond=2)
density of x[1]=0 conditional on x[2]=2 given
x ~ MVN(c(0,0), V2)
dnorm(0,0,1)
same as univariate density because V2 is diagonal
Ddivergence \hspace{1cm} d-divergence

Description

Calculates Ovaskainen’s (2008) \(d\)-divergence between 2 zero-mean multivariate normal distributions.

Usage

\texttt{Ddivergence(CA=NULL, CB=NULL, n=10000)}

Arguments

\begin{itemize}
 \item \texttt{CA} \hspace{1cm} Matrix A
 \item \texttt{CB} \hspace{1cm} Matrix B
 \item \texttt{n} \hspace{1cm} number of Monte Carlo samples for approximating the integral
\end{itemize}

Value

\(d\)-divergence

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Examples

\begin{verbatim}
CA<-rIW(diag(2),10, n=1)
CB<-rIW(diag(2),10, n=1)
Ddivergence(CA, CB)
\end{verbatim}
Dexpressions

List of unevaluated expressions for (mixed) partial derivatives of fitness with respect to linear predictors.

Description

Unevaluated expressions for (mixed) partial derivatives of fitness with respect to linear predictors for survival and fecundity.

Usage

Dexpressions

Value

- **PW.d0W**: Fitness \((W)\) function for the Poisson-Weibull (PW) model.
- **PW.d1Wds**: First Partial derivative of fitness \((d1W)\) with respect to survival \((d1s)\) linear predictor for the Poisson-Weibull (PW) model.
- **PW.d1Wdf**: First Partial derivative of fitness \((d1W)\) with respect to fecundity \((d1f)\) linear predictor for the Poisson-Weibull (PW) model.
- **PW.d3Wd2sd1f**: Mixed third partial derivative of fitness \((d3W)\) with 2nd derivative of survival linear predictor \((d2s)\) and first derivative of fecundity linear predictor \((d1f)\) from the Poisson-Weibull (PW) model.
- **PW.d3Wdsd2f**: and so on ...
- **PW.d2Wd2f**
- **PW.d2Wd2s**
- **PW.d3Wd3s**
- **PW.d3Wd3f**

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also

Dtensor

Dtensor

Tensor of (mixed) partial derivatives

Description

Forms tensor of (mixed) partial derivatives

Usage

Dtensor(expr, name=NULL, mu = NULL, m=1, evaluate = TRUE)

Arguments

- `expr`: 'expression'
- `name`: character vector, giving the variable names with respect to which derivatives will be computed. If NULL all variables in the expression will be used
- `mu`: optional: numeric vector, at which the derivatives are evaluated
- `m`: order of derivative
- `evaluate`: logical; if TRUE the derivatives are evaluated at `mu`, if FALSE the derivatives are left unevaluated

Value

Dtensor (list) of unevaluated expression(s) if evaluate=FALSE or a tensor if evaluate=TRUE

Author(s)

Jarrod Hadfield j.hadfield@ed.ac.uk

References

See Also

evalDtensor, Dexpressions, D

Examples

f<-expression(beta_1 + time * beta_2 + u)
Dtensor(f,eval=FALSE)
evalDtensor

Evaluates a list of (mixed) partial derivatives

Description

Evaluates a list of (mixed) partial derivatives

Usage

evalDtensor(x, mu)

Arguments

x
unevaluated (list) of expression(s)

mu
values at which the derivatives are evaluated: names need to match terms in x

Value

tensor

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also

Dtensor, D

Examples

f <- expression(beta_1 + time*beta_2+u)
Df <- Dtensor(f, eval=FALSE, m=2)
evalDtensor(Df, mu=data.frame(beta_1=0.5, beta_2=1, time=3, u=2.3))
Dtensor(f, mu=c(1,3,1,2.3), m=2)

gelman.prior

Prior Covariance Matrix for Fixed Effects.

Description

Prior Covariance Matrix for Fixed Effects.

Usage

gelman.prior(formula, data, scale=1, intercept=scale, singular.ok=FALSE)
Arguments

- **formula**: formula for the fixed effects.
- **data**: data.frame.
- **intercept**: prior variance for intercept
- **scale**: prior standard deviation for regression parameters
- **singular.ok**: logical: if FALSE linear dependencies in the fixed effects are removed. if TRUE they are left in an estimated, although all information comes form the prior

Details

Gelman et al. (2008) suggest that the input variables of a categorical regression are standardised and that the associated regression parameters are assumed independent in the prior. Gelman et al. (2008) recommend a scaled t-distribution with a single degree of freedom (scaled Cauchy) and a scale of 10 for the intercept and 2.5 for the regression parameters. If the degree of freedom is infinity (i.e. a normal distribution) then a prior covariance matrix $B\Sigma V$ can be defined for the regression parameters without input standardisation that corresponds to a diagonal prior D for the regression parameters had the inputs been standardised. The diagonal elements of D are set to scale except the first which is set to intercept. With logistic regression $\pi^2/3 + \sigma^2$ gives a prior that is approximately flat on the probability scale, where σ^2 is the total variance due to the random effects. For probit regression it is $1 + \sigma^2$.

Value

- prior covariance matrix

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Examples

dat<-data.frame(y=c(0,0,1), x=gl(2,2))
data with complete separation
prior<-list(B=list(mu=c(0,0), V=gelman.prior(~x, data=dat, scale=1+pi^2/3)), R=list(V=1,fix=1))
ml<-MCMCglmm(y~x, prior=prior, data=dat, family="ordinal", verbose=FALSE)
c2 <- (16 * sqrt(3)/(15 * pi))^2
plot(plogis(ml$Sol[,1]/sqrt(1+c2))) # marginal probability when x=1
Inverse Relatedness Matrix and Phylogenetic Covariance Matrix

Description

Usage
inverseA(pedigree=NULL, nodes="ALL", scale=TRUE, reduced=FALSE)

Arguments
- **pedigree**: ordered pedigree with 3 columns: id, dam and sire, or a phylo object.
- **nodes**: "ALL" calculates the inverse for all individuals/nodes. For phylogenies "TIPS" calculates the inverse for the species tips only, and for pedigrees a vector of id’s can be passed which inverts the relatedness matrix for that subset.
- **scale**: logical: should a phylogeny (needs to be ultrametric) be scaled to unit length (distance from root to tip)?
- **reduced**: logical: should childless nodes be dropped from the inverse and the pedigree/phylogeny representation be reduced?

Value
- **Ainv**: inverse as sparseMatrix
- **inbreeding**: inbreeding coefficients/branch lengths
- **pedigree**: pedigree/pedigree representation of phylogeny

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Examples
data(bird.families)
Ainv<-inverseA(bird.families)
knorm

(Mixed) Central Moments of a Multivariate Normal Distribution

Description

Forms a tensor of (mixed) central moments of a multivariate normal distribution

Usage

knorm(V, k)

Arguments

V
(co)variance matrix

k
kth central moment, must be even

Value

tensor

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Schott, J.R.(2003) Journal of Multivariate Analysis 87 (1) 177-190

See Also

dnorm

Examples

V <- diag(2)
knorm(V, 2)
knorm(V, 4)
KPPM

Kronecker Product Permutation Matrix

Description

Forms an $mk \times mk$ Kronecker Product Permutation Matrix

Usage

```r
KPPM(m, k)
```

Arguments

- `m` integer
- `k` integer

Value

Matrix

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Schott, J.R. (2003) Journal of Multivariate Analysis 87 (1) 177-190

Examples

```r
KPPM(2, 3)
```

krzanowski.test

Krzanowski's Comparison of Subspaces

Description

Calculates statistics of Krzanowski's comparison of subspaces.

Usage

```r
krzanowski.test(CA, CB, vecsA, vecsB, corr = FALSE, ...)
```
Arguments

CA | Matrix A
CB | Matrix B
vecsA | Vector of integers indexing the eigenvectors determining the subspace of A
vecsB | Vector of integers indexing the eigenvectors determining the subspace of B
corr | logical; if TRUE the variances of A and B are standardised
... | further arguments to be passed

Value

sumofS | metric for overall similarity with 0 indicting no similarity and a value of length(vecsA) for identical subspaces
angles | angle in degrees between each best matched pair of vectors
bisector | vector that lies between each best matched pair of vectors

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Examples

```r
CA <- rIW(diag(5), 10, n=1)
CB <- rIW(diag(5), 10, n=1)
krzanowski.test(CA, CB, vecsA=1:2, vecsB=1:2)
krzanowski.test(CA, CA, vecsA=1:2, vecsB=1:2)
```

kunif

Central Moments of a Uniform Distribution

Description

Returns the central moments of a uniform distribution

Usage

kunif(min, max, k)

Arguments

min, max | lower and upper limits of the distribution. Must be finite.
k | k central moment, must be even
Description

Evaluates orthogonal Legendre polynomials of degree 1 to degree over the specified set of points x

Usage

`leg(x, degree, normalized=TRUE)`

Arguments

- `x`: a numeric vector at which to evaluate the polynomial
- `degree`: the degree of the polynomial. If negative, degree 0 is not evaluated
- `normalized`: logical: should the polynomial be normalised

Details

Please refer to `legendre.polynomials` in the package orthopolynom for more details.

Value

Matrix of evaluated polynomials

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>
See Also

`legendre.polynomials`

Examples

```r
x <- rnorm(30)
model.matrix(~leg(x, 2) - 1)
```

`list2bdiag`
Forms the direct sum from a list of matrices

Description

Forms a block-diagonal matrix from a list of matrices

Usage

```r
list2bdiag(x)
```

Arguments

- `x`
 list of square matrices

Value

matrix

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

Examples

```r
M <- list(rIW(diag(3), 10), rIW(diag(2), 10))
list2bdiag(M)
```
MCMCglmm

Multivariate Generalised Linear Mixed Models

Description

Markov chain Monte Carlo Sampler for Multivariate Generalised Linear Mixed Models with special emphasis on correlated random effects arising from pedigrees and phylogenies (Hadfield 2010). Please read the course notes: vignette("CourseNotes", "MCMCglmm") or the overview vignette("Overview", "MCMCglmm")

Usage

```r
MCMCglmm(fixed = NULL, random = NULL, rcov = ~units, family = "gaussian", mev = NULL,
data = NULL, start = NULL, prior = NULL, tune = NULL, pedigree = NULL, nodes = "ALL",
scale = TRUE, nitt = 13000, thin = 10, burnin = 3000, pr = FALSE,
pl = FALSE, verbose = TRUE, DIC = TRUE, singular.ok = FALSE, saveX = TRUE,
saveZ = TRUE, saveXL = TRUE, slice = FALSE, ginverse = NULL)
```

Arguments

- `fixed` formula for the fixed effects, multiple responses are passed as a matrix using `cbind`
- `random` formula for the random effects. Multiple random terms can be passed using the `+` operator, and in the most general case each random term has the form `variance.function(formula):linking.function(random.terms)`. Currently, the only variance.functions available are `idv`, `idh`, `us` and `cor`. `idv` fits a constant variance across all components in formula, and `cor` fixes the variances to 1. Both `idh` and `us` fit different variances across each component in formula, but `us` will also fit the covariances. The formula can contain both factors and numeric terms (i.e. random regression) although it should be noted that the intercept term is suppressed. The (co)variances are the (co)variances of the random.terms effects. Currently, the only linking.functions available are `mm` and `str`. `mm` fits a multimembership model where multiple random terms are separated by the `+` operator. `str` allows covariances to exist between multiple random terms that are also separated by the `+` operator. In both cases the levels of all multiple random terms have to be the same. For simpler models the variance.function(formula) and linking.function(random.terms) can be omitted and the model syntax has the simpler form `~random1+random2+...`. There are two reserved variables: `units` which index rows of the response variable and `trait` which index columns of the response variable
- `rcov` formula for residual covariance structure. This has to be set up so that each data point is associated with a unique residual. For example a multi-response model might have the R-structure defined by `~us(trait):units`
are supported, where the prefix "cen" means censored, the prefix "zi" means zero inflated, the prefix "za" means zero altered, the prefix "zt" means zero truncated and the prefix "hu" means hurdle. If NULL, data needs to contain a family column.

mev
optional vector of measurement error variances for each data point for random effect meta-analysis.

data
data.frame

start
optional list having 4 possible elements: R (R-structure) G (G-structure) and liab (latent variables or liabilities) should contain the starting values where G itself is also a list with as many elements as random effect components. The fourth element QUA51 should be logical: if TRUE starting latent variables are obtained heuristically, if FALSE then they are sampled from a Z-distribution

prior
optional list of prior specifications having 3 possible elements: R (R-structure) G (G-structure) and B (fixed effects). B is a list containing the expected value (mu) and a (co)variance matrix (V) representing the strength of belief: the defaults are B$mu=0 and B$V=I*1e+10, where where I is an identity matrix of appropriate dimension. The priors for the variance structures (R and G) are lists with the expected (co)variances (V) and degree of belief parameter (nu) for the inverse-Wishart, and also the mean vector (alpha.mu) and covariance matrix (alpha.V) for the redundant working parameters. The defaults are nu=0, V=1, alpha.mu=0, and alpha.V=0. When alpha.V is non-zero, parameter expanded algorithms are used.

tune
optional (co)variance matrix defining the proposal distribution for the latent variables. If NULL an adaptive algorithm is used which ceases to adapt once the burn-in phase has finished.

pedigree
ordered pedigree with 3 columns id, dam and sire or a phylo object. This argument is retained for back compatability - see ginverse argument for a more general formulation.

nodes
pedigree/phylogeny nodes to be estimated. The default, "ALL" estimates effects for all individuals in a pedigree or nodes in a phylogeny (including ancestral nodes). For phylogenies "TIPS" estimates effects for the tips only, and for pedigrees a vector of ids can be passed to nodes specifying the subset of individuals for which animal effects are estimated. Note that all analyses are equivalent if omitted nodes have missing data but by absorbing these nodes the chain max mix better. However, the algorithm may be less numerically stable and may iterate slower, especially for large phylogenies.

scale
logical: should the phylogeny (needs to be ultrametric) be scaled to unit length (distance from root to tip)?

nitt
number of MCMC iterations

thin
thinning interval

burnin
burnin

pr
logical: should the posterior distribution of random effects be saved?

pl
logical: should the posterior distribution of latent variables be saved?

verbose
logical: if TRUE MH diagnostics are printed to screen
DIC logical: if TRUE deviance and deviance information criterion are calculated
singular.ok logical: if FALSE linear dependencies in the fixed effects are removed. If TRUE they are left in an estimated, although all information comes from the prior
saveX logical: save fixed effect design matrix
saveZ logical: save random effect design matrix
saveXL logical: save structural parameter design matrix
slice logical: should slice sampling be used? Only applicable for binary trials with independent residuals
ginverse a list of sparse inverse matrices \((A^{-1}) \) that are proportional to the covariance structure of the random effects. The names of the matrices should correspond to columns in data that are associated with the random term. All levels of the random term should appear as rownames for the matrices.

Value

Sol Posterior Distribution of MME solutions, including fixed effects
VCV Posterior Distribution of (co)variance matrices
CP Posterior Distribution of cut-points from an ordinal model
Liab Posterior Distribution of latent variables
Fixed list: fixed formula and number of fixed effects
Random list: random fromula, dimensions of each covariance matrix, number of levels per covariance matrix, and term in random formula to which each covariance belongs
Residual list: residual fromula, dimensions of each covariance matrix, number of levels per covariance matrix, and term in residual formula to which each covariance belongs
Deviance deviance -2*\log(p(y|...))
DIC deviance information criterion
X sparse fixed effect design matrix
Z sparse random effect design matrix
XL sparse structural parameter design matrix
error.term residual term for each datum
family distribution of each datum
Tune (co)variance matrix of the proposal distribution for the latent variables

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

mult.memb

Design Matrices for Multiple Membership Models

Description

Forms design matrices for multiple membership models

Usage

mult.memb(formula)

Arguments

formula formula
Details
Currently `mult.memb` can only usefully be used inside an `idv` variance function. The formula usually contains several factors that have the same factor levels.

Value

design matrix

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

Examples
```r
fac1 <- factor(sample(letters[1:3], 5, TRUE), levels=letters[1:3])
fac2 <- factor(sample(letters[1:3], 5, TRUE), levels=letters[1:3])
cbind(fac1, fac2)
mult.memb(~fac1+fac2)
```

PlodiaPO

Phenoloxidase measures on caterpillars of the Indian meal moth.

Description
Phenoloxidase measures on caterpillars of the Indian meal moth (*Plodia interpunctella*).

Usage

PlodiaPO

Format

a data frame with 511 rows and 3 columns, with variables indicating full-sib family (`F5family`), phenoloxidase measures (`PO`), and plate (`plate`). PO has undergone a Box-Cox power transformation of 0.141

Source

Tidbury H & Boots M (2007) University of Sheffield

See Also

PlodiaR, PlodiaRB
Resistance of Indian meal moth caterpillars to the granulosis virus PiGV.

Description
Resistance of Indian meal moth (*Plodia interpunctella*) caterpillars to the granulosis virus PiGV.

Usage
PlodiaR

Format
a data frame with 50 rows and 5 columns, with variables indicating full-sib family (F5family), date of egg laying (date_laid) and assaying (date_Ass), and the number of individuals from the family that were experimentally infected with the virus Infected and the number of those that pupated Pupated. These full-sib family identifiers also relate to the full-sib family identifiers in PlodiaPO

Source
Tidbury H & Boots M (2007) University of Sheffield

See Also
PlodiaRB, PlodiaPO

Resistance (as a binary trait) of Indian meal moth caterpillars to the granulosis virus PiGV.

Description
Resistance (as a binary trait) of Indian meal moth (*Plodia interpunctella*) caterpillars to the granulosis virus PiGV.

Usage
PlodiaRB

Format
a data frame with 784 rows and 4 columns, with variables indicating full-sib family (F5family), date of egg laying (date_laid) and assaying (date_Ass), and a binary variable indicating whether an individual was resistant (Pupated) to an experimental infection of the virus. These data are identical to those in the data.frame PlodiaR except each family-level binomial variable has been expanded into a binary variable for each individual.
`plot.MCMCglmm`

Source
Tidbury H & Boots M (2007) University of Sheffield

See Also

- `PlodiaR`, `PlodiaPO`

Description
plot method for class "MCMCglmm".

Usage
```r  
## S3 method for class 'MCMCglmm'
plot(x, random=FALSE, ...)
```  

Arguments

- `x`
 an object of class "MCMCglmm"
- `random`
 logical; should saved random effects be plotted
- `...`
 Further arguments to be passed

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also

- `plot.mcmc`, `MCMCglmm`

`plotsubspace`

Plots covariance matrices

Description
Represents covariance matrices as 3-d ellipsoids using the `rgl` package. Covariance matrices of dimension greater than 3 are plotted on the subspace defined by the first three eigenvectors.

Usage
```r  
plotsubspace(CA, CB=NULL, corr = FALSE, shadeCA = TRUE,
             shadeCB = TRUE, axes.lab = FALSE, ...)
```
Transforms posterior distribution of covariances into correlations

Arguments

- **CA**: Matrix
- **CB**: Optional second matrix
- **corr**: If TRUE the covariance matrices are transformed into correlation matrices
- **shadeCA**: If TRUE the ellipsoid is solid, if FALSE the ellipsoid is wireframe
- **shadeCB**: If TRUE the ellipsoid is solid, if FALSE the ellipsoid is wireframe
- **axes.lab**: If TRUE the axes are labelled with the eigenvectors
- **...**: further arguments to be passed

Details

The matrix CA is always red, and the matrix CB if given is always blue. The subspace is defined by the first three eigenvectors of CA, and the percentage of variance for each matrix along these three dimensions is given in the plot title.

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk> with code taken from the rgl package

See Also

- **rgl**

Examples

```r
if(require(rgl)!==FALSE){
  G1<-rIW(diag(4),10)
  G2<-G1*1.2
  # plotsubspace(G1, G2, shadeCB=FALSE)
  # commented out because of problems with rgl
}
```

posterior.cor

Transforms posterior distribution of covariances into correlations

Description

Transforms posterior distribution of covariances into correlations

Usage

```r
posterior.cor(x)
```

Arguments

- **x**: mcmc object of (co)variances stacked column-wise
posterior.evals

Value

posterior correlation matrices

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also

posterior.evals

Examples

v <- rIW(diag(2), 3, n=1000)
hist(posterior.cor(mcmc(v))[,2])

posterior.evals Posterior distribution of eigenvalues

Description

Posterior distribution of eigenvalues

Usage

posterior.evals(x)

Arguments

x mcmc object of (co)variances stacked column-wise

Value

posterior eigenvalues

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also

posterior.cor

Examples

v <- rIW(diag(2), 3, n=1000)
hist(posterior.evals(mcmc(v))[,2])
posterior.mode

Estimates the marginal parameter modes using kernel density estimation

Description

Estimates the marginal parameter modes using kernel density estimation

Usage

```r
posterior.mode(x, adjust=0.1, ...)
```

Arguments

- `x`: mcmc object
- `adjust`: numeric, passed to `density` to adjust the bandwidth of the kernel density
- `...`: other arguments to be passed

Value

modes of the kernel density estimates

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also

- density

Examples

```r
v <- rIW(as.matrix(1), 10, n=1000)
hist(v)
abline(v=posterior.mode(mcmc(v)), col="red")
```
predict.MCMCglmm

Predict method for GLMMs fitted with MCMCglmm

Description

Predicted values for GLMMs fitted with MCMCglmm

Usage

```r
## S3 method for class 'MCMCglmm'
predict(object, newdata=NULL, marginal=object$Random$formula,
       type="response", interval="none", level=0.95, ...)
```

Arguments

- `object`: an object of class "MCMCglmm"
- `newdata`: An optional data frame in which to look for variables with which to predict
- `marginal`: formula defining random effects to be marginalised
- `type`: character; either "terms" (link scale) or "response" (data scale)
- `interval`: character; either "none", "confidence" or "prediction"
- `level`: A numeric scalar in the interval (0,1) giving the target probability content of the intervals.
- `...`: Further arguments to be passed

Value

Expectation and credible interval

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also

MCMCglmm
prunePed

Pedigree pruning

Description

Creates a subset of a pedigree by retaining the ancestors of a specified subset of individuals.

Usage

prunePed(pedigree, keep, make.base=FALSE)

Arguments

- **pedigree**: Pedigree with id in column 1, dam in column 2 and sire in column 3.
- **keep**: Individuals in pedigree for which the ancestors should be retained.
- **make.base**: Logical: should ancestors that do not provide additional information be discarded?

Value

Subsetted pedigree.

Note

If the individuals in keep are the only phenotyped individuals for some analysis then some non-phenotyped individuals can often be discarded if they are not responsible for pedigree links between phenotyped individuals. In the simplest case (make.base=FALSE) all ancestors of phenotyped individuals will be retained, although further pruning may be possible using make.base=TRUE. In this case all pedigree links that do not connect phenotyped individuals are discarded resulting in some individuals becoming part of the base population. In terms of variance component and fixed effect estimation pruning the pedigree should have no impact on the target posterior distribution, although convergence and mixing may be better because there is less missing data.

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk> + Michael Morrissey
Ptensor

Tensor of Sample (Mixed) Central Moments

Description

Forms a tensor of sample (mixed) central moments

Usage

```r
Ptensor(x, k)
```

Arguments

- **x**: matrix; traits in columns samples in rows
- **k**: kth central moment

Value

tensor

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

Examples

```r
n <- 1000
y <- matrix(rnorm(n), n/2, 2)
Ptensor(y, 2)
cov(y) * ((n-1)/n)
```

rbv

Random Generation of MVN Breeding Values and Phylogenetic Effects

Description

Random Generation of MVN Breeding Values and Phylogenetic Effects

Usage

```r
rbv(pedigree, G, nodes="ALL", scale=TRUE, ggroups=NULL, gmeans=NULL)
```
Arguments

- **pedigree**: ordered pedigree with 3 columns id, dam and sire or a phylo object.
- **G**: (co)variance matrix
- **nodes**: effects for pedigree/phylogeny nodes to be returned. The default, nodes="ALL:" returns effects for all individuals in a pedigree or nodes in a phylogeny (including ancestral nodes). For phylogenies nodes="TIPS" returns effects for the tips only, and for pedigrees a vector of ids can be passed to nodes specifying the subset of individuals for which animal effects are returned.
- **scale**: logical: should a phylogeny (needs to be ultrametric) be scaled to unit length (distance from root to tip)?
- **ggroups**: optional; vector of genetic groups
- **gmeans**: matrix of mean breeding value for genetic groups (rows) by traits (columns)

Value

matrix of breeding values/phylogenetic effects

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

Examples

```r
data(bird.families)
bv<-rbv(bird.families, diag(2))
```

Description

residuals method for class "MCMCglmm".

Usage

```r
## S3 method for class 'MCMCglmm'
residuals(object, type = c("deviance", "pearson", "working", "response", "partial"), ...)
```

Arguments

- **object**: an object of class "MCMCglmm"
- **type**: the type of residuals which should be returned. The alternatives are: "deviance" (default), "pearson", "working", "response", and "partial".
- **...**: Further arguments to be passed
Value
vector of residuals

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also
residuals, MCMCglmm

rIW
Random Generation from the Conditional Inverse Wishart Distribution

Description
Samples from the inverse Wishart distribution, with the possibility of conditioning on a diagonal submatrix

Usage

```
rIW(V, nu, fix=NULL, n=1, CM=NULL)
```

Arguments
- `V` Expected (co)variance matrix as `nu` tends to infinity
- `nu` degrees of freedom
- `fix` optional integer indexing the partition to be conditioned on
- `n` integer: number of samples to be drawn
- `CM` matrix: optional matrix to condition on. If not given, and `fix!=NULL`, `V_22` is conditioned on

Details
If W^{-1} is a draw from the inverse Wishart, `fix` indexes the diagonal element of W^{-1} which partitions W^{-1} into 4 submatrices. `fix` indexes the upper left corner of the lower diagonal matrix and it is this matrix that is conditioned on.

For example partitioning W^{-1} such that

$$W^{-1} = \begin{bmatrix} W^{-1}_{11} & W^{-1}_{12} \\ W^{-1}_{21} & W^{-1}_{22} \end{bmatrix}$$

`fix` indexes the upper left corner of W^{-1}_{22}. If `CM!=NULL` then W^{-1}_{22} is fixed at `CM`, otherwise W^{-1}_{22} is fixed at v_{22}. For example, if `dim(V)=4` and `fix=2` then W^{-1}_{11} is a 1X1 matrix and W^{-1}_{22} is a 3X3 matrix.
rtcmvnorm

Random Generation from a Truncated Conditional Normal Distribution

Description

Samples from the Truncated Conditional Normal Distribution

Usage

rtcmvnorm(n = 1, mean = 0, V = 1, x=0, keep=1, lower = -Inf, upper = Inf)

Value

if n = 1 a matrix equal in dimension to V, if n>1 a matrix of dimension n x length(V)

Note

In versions of MCMCglmm >1.10 the arguments to rIW have changed so that they are more intuitive in the context of MCMCglmm. Following the notation of Wikipedia (http://en.wikipedia.org/wiki/Inverse-Wishart_distribution) the inverse scale matrix \(\Psi = (V\nu) \). In earlier versions of MCMCglmm (<1.11) \(\Psi = V^{-1} \). Although the old parameterisation is consistent with the riwish function in MCMCpack and the rwishart function in bayesm it is inconsistent with the prior definition for MCMCglmm. The following pieces of code are sampling from the same distributions:

```r
riwish(nuL nu*V)  # from MCMCpack
rwishart(nuL solve(nu*V))$IW  # from bayesm
rIW(nuL solve(nu*V))  # from MCMCglmm <1.11
rIW(VL nu)  # from MCMCglmm >=1.11
```

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Korsgaard, I.R. et. al. 1999 Genetics Selection Evolution 31 (2) 177:181

See Also

riwish, rwish

Examples

```r
nu<-10
V<-diag(4)
riw(V, nu, fix=2)
```
Arguments

- **n**: integer: number of samples to be drawn
- **mean**: vector of means
- **V**: covariance matrix
- **x**: vector of observations to condition on
- **keep**: element of x to be sampled
- **lower**: left truncation point
- **upper**: right truncation point

Value

vector

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

Examples

```r
par(mfrow=c(2,1))
V1<-cbind(c(1,0.5), c(0.5,1))
x1<rtcmvnorm(10000, c(0,0), V=V1, c(0,2), keep=1, lower=-1, upper=1)
x2<rtnorm(10000, 0, 1, lower=-1, upper=1)
plot(density(x1), main="Correlated conditioning observation")
lines(density(x2), col="red")
# densities of conditional (black) and unconditional (red) distribution
# when the two variables are correlated (r=0.5)

V2<-diag(2)
x3<-rtcmvnorm(10000, c(0,0), V=V2, c(0,2), keep=1, lower=-1, upper=1)
x4<rtnorm(10000, 0, 1, lower=-1, upper=1)
plot(density(x3), main="Uncorrelated conditioning observation")
lines(density(x4), col="red")
# densities of conditional (black) and unconditional (red) distribution
# when the two variables are uncorrelated (r=0)
```

rtnorm

Random Generation from a Truncated Normal Distribution

Description

Samples from the Truncated Normal Distribution

Usage

```r
rtnorm(n = 1, mean = 0, sd = 1, lower = -Inf, upper = Inf)
```
sir

Design Matrix for Simultaneous and Recursive Relationships between Responses

Description
Forms design matrix for simultaneous and recursive relationships between responses

Usage
sir(formula1=NULL, formula2=NULL)

Arguments

formula1 formula
formula2 formula

Value
design matrix
Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

Examples
```r
fac1 <- factor(sample(letters[1:3], 5, TRUE), levels=letters[1:3])
fac2 <- factor(sample(letters[1:3], 5, TRUE), levels=letters[1:3])
cbind(fac1, fac2)
sir(~fac1, ~fac2)
```

sm2asreml Converts sparseMatrix to asreml’s giv format

Description
Converts sparseMatrix to asreml’s giv format: row-ordered, upper triangle sparse matrix.

Usage
```r
sm2asreml(A=NULL, rownames=NULL)
```

Arguments
- `A` sparseMatrix
- `rownames` rownames of A

Value
data.frame: if A was formed from a pedigree equivalent to giv format returned by asreml.Ainverse

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also
inverseA

Examples
```r
data(bird.families)
A <- inverseA(bird.families)
Aasreml <- sm2asreml(A$Ainv, A$node.names)
```
spl

Orthogonal Spline Design Matrix

Description

Orthogonal Spline Design Matrix

Usage

`spl(x, k=10, knots=NULL, type="LRTP")`

Arguments

- `x`: a numeric covariate
- `k`: integer, defines knot points at the `1:k/(k+1)` quantiles of `x`
- `knots`: vector of knot points
- `type`: type of spline - currently only low-rank thin-plate ("LRTP") are implemented

Value

Design matrix post-multiplied by the inverse square root of the penalty matrix

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

Examples

```r
## Not run:
x<-rnorm(100)
y<-x^2+cos(x)-x+0.2*x^3+rnorm(100)
plot(y~x)
lines((x^2+cos(x)-x+0.2*x^3)[order(x)]~sort(x))

dat<-data.frame(y=y, x=x)

m1<-MCMCglmm(y~x, random=~idv(spl(x)), data=dat, pr=TRUE, verbose=FALSE) # penalised smoother
m2<-MCMCglmm(y~x+spl(x), data=dat, verbose=FALSE) # non-penalised

pred1<-cbind(m1$X,m1$Z)%*%colMeans(m1$Sol))%x
pred2<-cbind(m2$X)%*%colMeans(m2$Sol))%x

lines(pred1[order(x)]~sort(x), col="red")
lines(pred2[order(x)]~sort(x), col="green")

m1$DIC-mean(m1$Deviance) # effective number of parameters < 13
m2$DIC-mean(m2$Deviance) # effective number of parameters ~ 13

## End(Not run)
```
SShorns

Horn type and genders of Soay Sheep

Description

Horn type and genders of Soay Sheep *Ovis aires*

Usage

`btdata`

Format

a data frame with 666 rows and 3 columns, with individual identifier (`id`), horn type (`horn`) and gender (`sex`).

References

Clutton-Brock T., Pemberton, J. Eds. 2004 Soay Sheep: Dynamics \\& Selection in an Island Population

summary.MCMCglmm

Summarising GLMM Fits from MCMCglmm

Description

summary method for class "MCMCglmm". The returned object is suitable for printing with the `print.summary.MCMCglmm` method.

Usage

```r
## S3 method for class 'MCMCglmm'
summary(object, random=FALSE, ...)
```

Arguments

- `object` an object of class "MCMCglmm"
- `random` logical: should the random effects be summarised
- `...` Further arguments to be passed
Value

<table>
<thead>
<tr>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIC</td>
<td>Deviance Information Criterion</td>
</tr>
<tr>
<td>fixed.formula</td>
<td>model formula for the fixed terms</td>
</tr>
<tr>
<td>random.formula</td>
<td>model formula for the random terms</td>
</tr>
<tr>
<td>residual.formula</td>
<td>model formula for the residual terms</td>
</tr>
<tr>
<td>solutions</td>
<td>posterior mean, 95% HPD interval, MCMC p-values and effective sample size of fixed (and random) effects</td>
</tr>
<tr>
<td>Gcovariances</td>
<td>posterior mean, 95% HPD interval and effective sample size of random effect (co)variance components</td>
</tr>
<tr>
<td>Gterms</td>
<td>indexes random effect (co)variances by the component terms defined in the random formula</td>
</tr>
<tr>
<td>Rcovariances</td>
<td>posterior mean, 95% HPD interval and effective sample size of residual (co)variance components</td>
</tr>
<tr>
<td>Rterms</td>
<td>indexes residuals (co)variances by the component terms defined in the rcov formula</td>
</tr>
<tr>
<td>csats</td>
<td>chain length, burn-in and thinning interval</td>
</tr>
<tr>
<td>cutpoints</td>
<td>posterior mean, 95% HPD interval and effective sample size of cut-points from an ordinal model</td>
</tr>
</tbody>
</table>

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also

- MCMCglmm

Tri2M

Lower/Upper Triangle Elements of a Matrix

Description

Lower/Upper triangle elements of a matrix or forms a matrix from a vector of lower/upper triangle elements

Usage

`Tri2M(x, lower.tri = TRUE, reverse = TRUE, diag = TRUE)`
Arguments

- **x**: Matrix or vector
- **lower.tri**: If `x` is a matrix then the lower triangle (TRUE) or upper triangle (FALSE) elements (including diagonal elements) are returned. If `x` is a vector a matrix is formed under the assumption that `x` are the lower triangle (TRUE) or upper triangle (FALSE) elements.
- **reverse**: logical: if TRUE a symmetric matrix is formed, if FALSE the remaining triangle is left as zeros.
- **diag**: logical: if TRUE diagonal elements are included.

Value

numeric or matrix

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

Examples

```r
M <- rIW(diag(3), 10)
x <- Tri2M(M)
x
Tri2M(x, reverse=TRUE)
Tri2M(x, reverse=FALSE)
```
Index

*Topic array
 commutation, 6
 Dtensor, 10
 evalDtensor, 11
 inverseA, 13
 KPPM, 15
 Ptensor, 31
*Topic datasets
 BTdata, 5
 BTped, 5
 PlodiaPO, 23
 PlodiaA, 24
 PlodiaRB, 24
 SSHorns, 39
*Topic distribution
 dcmvnorm, 7
 gelmanPrior, 11
 knorm, 14
 kunif, 16
 posterior.cor, 26
 posterior.evals, 27
 posterior.mode, 28
 rbv, 31
 rIW, 33
 rtmvnorm, 34
 rtnorm, 35
*Topic hplot
 plot.MCMCglmm, 25
 plotsubspace, 25
*Topic manip
 at.level, 3
 at.set, 4
 leg, 17
 list2bdiag, 18
 mult.memb, 22
 prunePed, 30
 sir, 36
 sm2asreml, 37
 spl, 38
 Tri2M, 40
*Topic math
 Dtensor, 10
 evalDtensor, 11
*Topic models
 MCMCglmm, 19
 predict.MCMCglmm, 29
 residuals.MCMCglmm, 32
 summary.MCMCglmm, 39
*Topic multivariate
 Ddivergence, 8
 krzanowski.test, 15
*Topic symbolmath
 Dexpressions, 9
 at.level, 3, 4
 at.set, 3, 4
 BTdata, 5
 BTped, 5, 5, 6
 commutation, 6
 D, 10, 11
 data.frame, 12
 dcmvnorm, 7
 Ddivergence, 8
 density, 28
 Dexpressions, 9, 10
 dnorm, 14
 Dtensor, 9, 10, 11
 dunif, 17
 evalDtensor, 10, 11
 formula, 12, 19
 gelmanPrior, 11
 inverseA, 13
 knorm, 14
INDEX

KPPM, 15
krzanowski.test, 15
kunif, 16

leg, 17
legendre.polynomials, 17, 18
list2bdiag, 18

mcmc, 22
MCMCglmm, 19, 25, 29, 33, 34, 40
MCMCglmm-package, 2
mult.memb, 22

PlodiaPO, 23, 24, 25
PlodiaR, 23, 24, 25
PlodiaRB, 23, 24, 24
plot.MCMCglmm, 25
plot.subspace, 25
posterior.cor, 26, 27
posterior.evals, 27, 27
posterior.mode, 28
predict.MCMCglmm, 29
print.MCMCglmm (summary.MCMCglmm), 39
print.summary.MCMCglmm
 (summary.MCMCglmm), 39
prunePed, 30
Ptensor, 31

rbv, 31
residuals, 33
residuals.MCMCglmm, 32
rgl, 26
rIW, 33
riwish, 34
rtcmvnorm, 34
rtnorm, 35, 36
rwish, 34
rwishart, 34

sir, 36
sm2asreml, 37
spl, 38
SSHorns, 39
summary.MCMCglmm, 39

Tri2M, 40