Package ‘GenOrd’

February 19, 2015

Type Package
Title Simulation of ordinal and discrete variables with given
correlation matrix and marginal distributions
Version 1.2.0
Date 2014-03-28
Author Alessandro Barbiero, Pier Alda Ferrari
Maintainer Alessandro Barbiero <alessandro.barbiero@unimi.it>
Description The package implements a procedure for generating samples
from ordinal/discrete random variables with pre-specified
correlation matrix and marginal distributions.
License GPL
LazyLoad yes
Depends mvtnorm, Matrix, MASS
NeedsCompilation no
Repository CRAN
Date/Publication 2014-04-01 14:38:37

R topics documented:

GenOrd-package .. 2
contord ... 3
corrcheck ... 4
ordcont .. 5
ordsample ... 7

Index 10
Description

The package implements a procedure for generating samples from ordinal/discrete random variables with pre-specified correlation matrix and marginal distributions. It is developed in two steps: the first step (function `ordcont`) sets up the original continuous variables in order to achieve the final discrete/ordinal variables meeting the experimental conditions; the second step (function `ordsample`) generates samples from the adjusted original variables and discretizes them, thus simulating samples from the target variables. The procedure can handle both Pearson’s correlation and Spearman’s rho, and any finite support for the discrete variables. The intermediate function `contord` computes the correlations of discrete/ordinal variables derived from correlated normal variables through discretization. Function `corrcheck` returns the lower and upper bounds of the correlation coefficients of ordinal/discrete variables given their marginal distributions, i.e. returns the range of feasible pairwise correlations. This version has fixed some inconsistencies regarding Spearman correlation coefficient that affected the two previous versions.

Details

```
Package: GenOrd
Type: Package
Version: 1.2.0
Date: 2014-03-28
License: GPL
LazyLoad: yes
```

Author(s)

Alessandro Barbiero, Pier Alda Ferrari
Maintainer: Alessandro Barbiero <alessandro.barbiero@unimi.it>

References

See Also

`contord`, `ordcont`, `corrcheck`, `ordsample`
correlations of discretized variables

Description

The function computes the correlation matrix of the k variables, with given marginal distributions, derived discretizing a k-variate standard normal variable with given correlation matrix.

Usage

```r
contord(marginal, sigma, support = list(), spearman = FALSE)
```

Arguments

- `marginal`: a list of k elements, where k is the number of variables. The i-th element of marginal is the vector of the cumulative probabilities defining the marginal distribution of the i-th component of the multivariate variable. If the i-th component has k_i categories, the i-th element of marginal will contain $k_i - 1$ probabilities (the k_i-th is obviously 1).
- `sigma`: the correlation matrix of the standard multivariate normal variable.
- `support`: a list of k elements, where k is the number of variables. The i-th element of support contains the ordered values of the support of the i-th variable. By default, the support of the i-th variable is $1, 2, ..., k_i$.
- `spearman`: if TRUE, the function finds Spearman’s correlations (and it is not necessary to provide support), if FALSE (default) Pearson’s correlations.

Value

the correlation matrix of the discretized variables.

Author(s)

Alessandro Barbiero, Pier Alda Ferrari

See Also

`ordcont`, `ordsample`, `corrcheck`

Examples

```r
# consider 4 discrete variables
k<-4
# with these marginal distributions
marginal<-list(0.4,c(0.3,0.6),c(0.25,0.5,0.75),c(0.1,0.2,0.8,0.9))
# generated discretizing a multivariate standard normal variable
# with correlation matrix
Sigma<-matrix(0.5,4,4)
```
corcheck

Checking correlations

diag(Sigma)<-1
the resulting correlation matrix for the discrete variables is
contord(marginal, Sigma)
note all the correlations are smaller than the original 0.6
change Sigma, adding a negative correlation
Sigma[1,2]<-0.15
Sigma[2,1]<-Sigma[1,2]
Sigma
checking whether Sigma is still positive definite
eigen(Sigma)$values # all >0, OK
contord(marginal, Sigma)

description

The function returns the lower and upper bounds of the correlation coefficients of the ordinal/discrete
variables given their marginal distributions, i.e. returns the range of feasible pairwise correlations.

Usage

corrcheck(marginal, support = list(), Spearman = FALSE)

Arguments

marginal a list of k elements, where k is the number of variables. The i-th element of
marginal is the vector of the cumulative probabilities defining the marginal dis-
tribution of the i-th component of the multivariate variable. If the i-th compo-
nent has k_i categories, the i-th element of marginal will contain k_i − 1 proba-
bilities (the k_i-th is obviously 1).
support a list of k elements, where k is the number of variables. The i-th element of sup-
port contains the ordered values of the support of the i-th variable. By default,
the support of the i-th variable is 1, 2, ..., k_i
Spearman TRUE if we consider Spearman’s correlation, FALSE (default) if we consider
Pearson’s correlation

Value

The functions returns a list of two matrices: the former contains the lower bounds, the latter the
upper bounds of the feasible correlations (on the extra-diagonal elements)

Author(s)

Alessandro Barbiero, Pier Alda Ferrari

See Also

contord, ordcont, ordsample
Examples

four variables
k<-4
with 2, 3, 4, and 5 categories (Likert scales, by default)
kj<-c(2,3,4,5)
and these marginal distributions (set of cumulative probabilities)
marginal<-list(0.4,c(0.6,0.9),c(0.1,0.2,0.4),c(0.6,0.7,0.8,0.9))
corrcheck(marginal) # lower and upper bounds for Pearson's rho
corrcheck(marginal,Spearman=TRUE) # lower and upper bounds for Spearman's rho
change the supports
support<-list(c(0,1),c(1,2,4),c(1,2,3,4),c(0,1,2,5,10))
corrcheck(marginal, support=support) # updated bounds

ordcont computes the "intermediate" correlation matrix for the multivariate standard normal in order to achieve the "target" correlation matrix for the ordinal/discrete variables

Description

The function computes the correlation matrix of the k-dimensional standard normal r.v. yielding the desired correlation matrix Sigma for the k-dimensional r.v. with desired marginal distributions marginal

Usage

ordcont(marginal,Sigma,support=list(),Spearman=FALSE,epsilon=1e-06,maxit=100)

Arguments

marginal a list of k elements, where k is the number of variables. The i-th element of marginal is the vector of the cumulative probabilities defining the marginal distribution of the i-th component of the multivariate variable. If the i-th component has k_i categories, the i-th element of marginal will contain k_i - 1 probabilities (the k_i-th is obviously 1).

Sigma the target correlation matrix of the ordinal/discrete variables

support a list of k elements, where k is the number of variables. The i-th element of support contains the ordered values of the support of the i-th variable. By default, the support of the i-th variable is 1, 2, ..., k_i

Spearman if TRUE, the function finds Spearman's correlations (and it is not necessary to provide support), if FALSE (default) Pearson's correlations

epsilon the maximum tolerated error among target and actual correlations

maxit the maximum number of iterations allowed for the algorithm
Value

a list of four elements

SigmaC the correlation matrix of the multivariate standard normal variable
Sigma0 the actual correlation matrix of the discretized variables (it should approximately coincide with the target correlation matrix Sigma)
Sigma the target correlation matrix of the ordinal/discrete variables
niter a matrix containing the number of iterations performed by the algorithm, one for each pair of variables
maxerr the actual maximum error (the absolute maximum deviation between actual and target correlations of the ordinal/discrete variables)

Note

For some choices of marginal and Sigma, the algorithm may not provide a feasible correlation matrix SigmaC. In this case, a warning is issued and the function supplies as SigmaC - just for consistency - the nearest correlation matrix, according to the algorithm discussed in Higham (2002). Obviously, the corresponding Sigma0 may sensibly differ from Sigma. The value of the maximum tolerated absolute error epsilon on the elements of the correlation matrix for ordinal r.v. can be set by the user: a value between 0.000001 and 0.01 seems to be an acceptable compromise assuring both the precision of the results and the convergence of the algorithm; moreover, a maximum number of iteration can be chosen (maxit), in order to avoid possible endless loops in case of non-convergence.

Author(s)

Alessandro Barbiero, Pier Alda Ferrari

References

See Also

contord, ordsample, corrcheck

Examples

consider a 4-dimensional ordinal variable
k<-4
with different number of categories
kj<-c(2,3,4,5)
and uniform marginal distributions
marginal<-list(P.ULc(1OSLROS)Lc(1OTLROTLSOT)Lc(1OULROULSOULTOU))
corrcheck(marginal)
and the following correlation matrix
Sigma<-matrix(c(1,0.5,0.4,0.3,0.5,1,0.5,0.4,0.4,0.5,1,0.5,0.3,0.4,0.5,1),4,4,byrow=TRUE)
Sigma
the correlation matrix of the standard 4-dimensional standard normal
ensuring sigma is
res<-
ordsample

change some marginal distributions
marginal<-list(0.3,c(1/3,2/3),c(1/5,2/5,3/5),c(0.1,0.2,0.4,0.6))
corrcheck(marginal)
and notice how the correlation matrix of the multivariate normal changes...
res<-
ordsample

change sigma, adding a negative correlation
Sigma[1,2]<-0.2
Sigma[2,1]<-Sigma[1,2]
Sigma
checking whether Sigma is still positive definite
eigen(Sigma)$values # all >0, OK
res<-
ordsample

oordsample

drawing a sample of ordinal/discrete data

Description
The function draws a sample from a multivariate ordinal/discrete variable with correlation matrix Sigma and pre-specified marginals marginal

Usage
ordsample(n, marginal, Sigma, support=list(), Spearman=FALSE, cormat="ordinal")

Arguments

n
the sample size

marginal
a list of \(k \) elements, where \(k \) is the number of variables. The \(i \)-th element of marginal is the vector of the cumulative probabilities defining the marginal distribution of the \(i \)-th component of the multivariate variable. If the \(i \)-th component has \(k_i \) categories, the \(i \)-th element of marginal will contain \(k_i - 1 \) probabilities (the \(k_i \)-th is obviously 1).

Sigma
the target correlation matrix of the ordinal/discrete variables

support
a list of \(k \) elements, where \(k \) is the number of variables. The \(i \)-th element of support contains the ordered values of the support of the \(i \)-th variable. By default, the support of the \(i \)-th variable is \(1, 2, \ldots, k_i \).

Spearman
if TRUE, the function finds Spearman’s correlations (and it is not necessary to provide support), if FALSE (default) Pearson’s correlations

cormat
ordinal if the Sigma in input is the target correlation matrix of ordinal/discrete variables; continuous if the Sigma in input is the intermediate correlation matrix of the multivariate standard normal
Value

A $n \times k$ matrix of discrete/ordinal data drawn from the k-variate discrete/ordinal r.v. with the desired marginal distributions and correlation matrix.

Author(s)

Alessandro Barbiero, Pier Alda Ferrari

See Also

contord, ordcont, corrcheck

Examples

Example 1

draw a sample from a bivariate ordinal variable
with 4 of categories and asymmetrical marginal distributions
and correlation coefficient 0.6 (to be checked)
k<-2
marginal<-list(c(0.1,0.3,0.6),c(0.4,0.7,0.9))
corrcheck(marginal) # check ok
Sigma<-matrix(c(1,0.6,0.6,1),2,2)
sample size 1000
n<-1000
generate a sample of size n
m<-ordsample(n, marginal, Sigma)
head(m)
sample correlation matrix
cor(m) # compare it with Sigma
cumsum(table(m[,1]))/n
cumsum(table(m[,2]))/n # compare it with the two marginal distributions

Example 1bis

draw a sample from a bivariate ordinal variable
with 4 of categories and asymmetrical marginal distributions
and Spearman correlation coefficient 0.6 (to be checked)
k<-2
marginal<-list(c(0.1,0.3,0.6),c(0.4,0.7,0.9))
corrcheck(marginal, Spearman=TRUE) # check ok
Sigma<-matrix(c(1,0.6,0.6,1),2,2)
sample size 1000
n<-1000
generate a sample of size n
m<-ordsample(n, marginal, Sigma, Spearman=TRUE)
head(m)
sample correlation matrix
cor(rank(m[,1]),rank(m[,2])) # compare it with Sigma
cumsum(table(m[,1]))/n
cumsum(table(m[,2]))/n # compare it with the two marginal distributions
Example 2

draw a sample from a 4-dimensional ordinal variable
with different number of categories and uniform marginal distributions
and different correlation coefficients

k<-4
marginal<-list(0.5,c(1/2,1/3,1/4),c(1/2,1/3,1/4,1/5),c(1/2,1/3,1/4,1/5,1/6))
corrcheck(marginal)

select a feasible correlation matrix
Sigma<-matrix(c(1,0.5,0.4,0.3,0.5,1,0.5,0.4,0.4,0.5,1,0.5,0.4,0.4,0.5,1),4,4,byrow=TRUE)
Sigma

sample size 100
n<-100

generate a sample of size n
set.seed(1)
m<-ordsample(n, marginal, Sigma)

sample correlation matrix
cor(m) # compare it with Sigma
cumsum(table(m[,4]))/n # compare it with the fourth marginal
head(m)

or equivalently...
set.seed(1)
res<-ordcont(marginal, Sigma)
res[[1]] # the intermediate correlation matrix of the multivariate normal
m<-ordsample(n, marginal, res[[1]], cormat="continuous")
head(m)
Index

*Topic datagen
 contord, 3
 ordcont, 5
 ordsample, 7

*Topic distribution
 contord, 3
 corrcheck, 4
 ordcont, 5
 ordsample, 7

*Topic htest
 contord, 3
 corrcheck, 4
 ordcont, 5
 ordsample, 7

*Topic models
 contord, 3
 corrcheck, 4
 ordcont, 5
 ordsample, 7

*Topic package
 GenOrd-package, 2
 contord, 2, 3, 4, 6, 8
 corrcheck, 2, 3, 4, 6, 8
 GenOrd-package, 2
 ordcont, 2–4, 5, 8
 ordsample, 2–4, 6, 7