GeDS: Geometrically Designed Spline Regression

Geometrically Designed Spline ('GeDS') Regression is a non-parametric geometrically motivated method for fitting variable knots spline predictor models in one or two independent variables, in the context of generalized (non-)linear models. 'GeDS' estimates the number and position of the knots and the order of the spline, assuming the response variable has a distribution from the exponential family. A description of the method can be found in Kaishev et al. (2016) <doi:10.1007/s00180-015-0621-7> and Dimitrova et al. (2017) <>.

Version: 0.1.3
Depends: R (≥ 3.0.1), Rcpp (≥ 0.12.1), splines, stats, utils, Matrix, methods, Rmpfr
LinkingTo: Rcpp
Published: 2017-12-19
Author: Dimitrina S. Dimitrova, Vladimir K. Kaishev, Andrea Lattuada and Richard J. Verrall
Maintainer: Andrea Lattuada <Andrea.Lattuada at>
License: GPL-3
NeedsCompilation: yes
Citation: GeDS citation info
CRAN checks: GeDS results


Reference manual: GeDS.pdf
Package source: GeDS_0.1.3.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X binaries: r-release: GeDS_0.1.3.tgz, r-oldrel: GeDS_0.1.3.tgz
Old sources: GeDS archive


Please use the canonical form to link to this page.