Package ‘COUNT’

February 19, 2015

Type Package
Title Functions, data and code for count data.
Version 1.3.2
Date 2014-08-15
Imports MASS
Depends R (>= 2.10), msme, sandwich
Author Joseph M Hilbe <hilbe@asu.edu>
Maintainer Andrew Robinson <apro@unimelb.edu.au>
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2014-08-15 07:32:21

R topics documented:

affairs ... 2
azcagptca .. 4
azdrg112 ... 5
azpro ... 6
azprocedure .. 7
badhealth .. 8
fasttrakg ... 9
fishing ... 10
lbw ... 11
lbwgrp .. 13
logit_syn ... 14
loomis ... 15
Description

Data from Fair (1978). Although Fair used a tobit model with the data, the outcome measure can be modeled as a count. In fact, Greene (2003) modeled it as Poisson, but given the amount of overdispersion in the data, employing a negative binomial model is an appropriate strategy. The data is stored in the affairs data set. Naffairs is the response variable, indicating the number of affairs reported by the participant in the past year.

Usage

data(affairs)

Format

A data frame with 601 observations on the following 18 variables.

naffairs number of affairs within last year
kids 1=have children;0= no children
vryunhap (1/0) very unhappily married
unhap (1/0) unhappily married
avgmarr (1/0) average married
hapavg (1/0) happily married
vryhap (1/0) very happily married
antirel (1/0) anti religious
notrel (1/0) not religious
slghtrel (1/0) slightly religious
smerel (1/0) somewhat religious
vryrel (1/0) very religious
yrsmarr1 (1/0) >0.75 yrs
yrsmarr2 (1/0) >1.5 yrs
yrsmarr3 (1/0) >4.0 yrs
yrsmarr4 (1/0) >7.0 yrs
yrsmarr5 (1/0) >10.0 yrs
yrsmarr6 (1/0) >15.0 yrs

Details

rwm5yr is saved as a data frame. Count models use naffairs as response variable. 0 counts are included.

Source

References

Hilbe, Joseph M (2009), Logistic regression Models, Chapman & Hall/CRC

Examples

data(affairs)
glmaffp <- glm(naffairs ~ kids + yrmarr2 + yrmarr3 + yrmarr4 + yrmarr5,
 family = poisson, data = affairs)
summary(glmaffp)
exp(coef(glmaffp))

require(MASS)
glmaffnb <- glm.nb(naffairs ~ kids + yrmarr2 + yrmarr3 + yrmarr4 + yrmarr5,
 data=affairs)
summary(glmaffnb)
exp(coef(glmaffnb))
Description

Random subset of the 1991 Arizona Medicare data for patients hospitalized subsequent to undergoing a CABG (DRGs 106, 107) or PTCA (DRG 112) cardiovascular procedure.

Usage

data(azcabgptca)

Format

A data frame with 1959 observations on the following 6 variables.

- died systolic blood pressure of subject
- procedure 1=CABG; 0=PTCA
- gender 1=male; 0=female
- age age of subject
- los hospital length of stay
- type 1=emerg/urgent; 0=elective

Details

azcabgptca is saved as a data frame.

Source

Hilbe, Negative Binomial Regression, 2nd ed, Cambridge Univ Press

References

Hilbe, Joseph M (2014), Modeling Count Data, Cambridge University Press

Examples

data(azcabgptca); attach(azcabgptca)
table(los); table(procedure, type); table(los, procedure)
summary(los)
summary(c91a <- glm(los ~ procedure+ type, family=poisson, data=azcabgptca))
modelfit(c91a)
summary(c91b <- glm(los ~ procedure+ type, family=quasipoisson, data=azcabgptca))
modelfit(c91b)
library(sandwich)
sqrt(diag(vcovHC(c91a, type="HC0")))
Description

The data set relates to the hospital length of stay for patients having a CABG or PTCA (type1) heart procedure. The data comes from the 1995 Arizona Medicare data for DRG (Diagnostic Related Group) 112. Other predictors include gender(1=female) and age75 (1-age 75+). Type is labeled as 1=emergency or urgent admission; 0= elective. Length of stay (los) ranges from 1 to 53 days.

Usage

data(azdrg112)

Format

A data frame with 1,798 observations on the following 4 variables.

- los hospital length of stay: 1-53 days
- gender 1=male; 0=female
- type1 1=emergency/urgent admission; 0=elective admission
- age75 1=age>75; 0=age<=75

Details

azdrg112 is saved as a data frame. Count models typically use los as response variable. 0 counts are not included

Source

DRG 112 data from the 1995 Arizona Medicare (MedPar) State files

References

Examples

data(azdrg112)
glmazp <- glm(los ~ type1 + gender + age75, family=poisson, data=azdrg112)
summary(glmazp)
exp(coef(glmazp))
library(MASS)
glmaznb <- glm.nb(los ~ type1 + gender + age75, data=azdrg112)
summary(glmaznb)
exp(coef(glmaznb))
Description

Data come from the 1991 Arizona cardiovascular patient files. A subset of the fields was selected to model the differential length of stay for patients entering the hospital to receive one of two standard cardiovascular procedures: CABG and PTCA. CABG is the standard acronym for Coronary Artery Bypass Graft, where the flow of blood in a diseased or blocked coronary artery or vein has been grafted to bypass the diseased sections. PTCA, or Percutaneous Transluminal Coronary Angioplasty, is a method of placing a balloon in a blocked coronary artery to open it to blood flow. It is a much less severe method of treatment for those having coronary blockage, with a corresponding reduction in risk.

Usage

data(azpro)

Format

A data frame with 3589 observations on the following 6 variables.

- los: length of hospital stay
- procedure: 1=CABG; 0=PTCA
- sex: 1=Male; 0=female
- admit: 1=Urgent/Emerg; 0=elective (type of admission)
- age75: 1=Age>75; 0=Age<=75
- hospital: encrypted facility code (string)

Details

azpro is saved as a data frame. Count models use los as response variable. 0 counts are structurally excluded.

Source

References

azprocedure

Examples

```r
data(azpro)
glmazp <- glm(los ~ procedure + sex + admit, family=poisson, data=azpro)
summary(glmazp)
exp(coef(glmazp))
#glmaznb <- glm.nb(los ~ procedure + sex + admit, data=azpro)
#summary(glmaznb)
#exp(coef(glmaznb))
```

Description

Data come from the 1991 Arizona cardiovascular patient files. A subset of the fields was selected to model the differential length of stay for patients entering the hospital to receive one of two standard cardiovascular procedures: CABG and PTCA. CABG is the standard acronym for Coronary Artery Bypass Graft, where the flow of blood in a diseased or blocked coronary artery or vein has been grafted to bypass the diseased sections. PTCA, or Percutaneous Transluminal Coronary Angioplasty, is a method of placing a balloon in a blocked coronary artery to open it to blood flow. It is a much less severe method of treatment for those having coronary blockage, with a corresponding reduction in risk.

Usage

```r
data(azprocedure)
```

Format

A data frame with 3589 observations on the following 6 variables.

- **los**: length of hospital stay
- **procedure**: 1 = CABG; 0 = PTCA
- **sex**: 1 = Male; 0 = Female
- **admit**: 1 = Urgent/Emerg; 0 = Elective (type of admission)
- **age75**: 1 = Age > 75; 0 = Age <= 75
- **hospital**: encrypted facility code (string)

Details

azprocedure is saved as a data frame. Count models use los as response variable. 0 counts are structurally excluded.

Source

References

Hilbe, Joseph M (2014), Modeling Count Data, Cambridge University Press
Hilbe, Joseph M (2009), Logistic Regression Models, Chapman & Hall/CRC

Examples

```r
library(MASS)
library(msme)

data(azprocedure)

glmazp <- glm(los ~ procedure + sex + admit, family=poisson, data=azprocedure)
summary(glmazp)
exp(coef(glmazp))

nb2 <- nbinomial(los ~ procedure + sex + admit, data=azprocedure)
summary(nb2)
exp(coef(nb2))

glmaznb <- glm.nb(los ~ procedure + sex + admit, data=azprocedure)
summary(glmaznb)
exp(coef(glmaznb))
```

Description

From German health survey data for the year 1998 only.

Usage

data(badhealth)

Format

A data frame with 1,127 observations on the following 3 variables.

- numvisit: number of visits to doctor during 1998
- badh: 1=patient claims to be in bad health; 0=not in bad health
- age: age of patient: 20-60

Details

badhealth is saved as a data frame. Count models use numvisit as the response variable, 0 counts are included.
fasttrakg

Source

German Health Survey, amended in Hilbe and Greene (2008).

References

Examples

```r
data(badhealth)
glmbadp <- glm(numvisit ~ badh + age, family=poisson, data=badhealth) summary(glmbadp) exp(coef(glmbadp))
library(MASS) glmbadnb <- glm.nb(numvisit ~ badh + age, data=badhealth) summary(glmbadnb) exp(coef(glmbadnb))
```

Description

Data are from the Canadian National Cardiovascular Disease registry called, FASTRAK. years covered at 1996-1998. They have been grouped by covariate patterns from individual observations.

Usage

data(fasttrakg)

Format

A data frame with 15 observations on the following 9 variables.

- `die` number died from MI
- `cases` number of cases with same covariate pattern
- `anterior` 1=anterior site MI; 0=inferior site MI
- `hcabg` 1=history of CABG; 0=no history of CABG
- `killip` Killip level of cardiac event severity (1-4) age75 1= Age>75; 0=Age<=75
- `kk1` 1/0 angina; not MI
- `kk2` 1/0 moderate severity cardiac event
- `kk3` 1/0 Severe cardiac event
- `kk4` 1/0 Severe cardiac event; death
Details

fasttrakg is saved as a data frame. Count models use died as response numerator and cases as the denominator

Source

References

Examples

library(MASS)
data(fasttrakg)
glmfp <- glm(die ~ anterior + factor(killip) + offset(log(cases)), family=poisson, data=fasttrakg)
summary(glmfp)
exp(coef(glmfp))

Description

The fishing data is adapted from Zuur, Hilbe and Ieno (2013) to determine whether the data appears to be generated from more than one generating mechanism. The data are originally adapted from Bailey et al. (2008) who were interested in how certain deep-sea fish populations were impacted when commercial fishing began in locations with deeper water than in previous years. Given that there are 147 sites that were researched, the model is of (1) the total number of fish counted per site (totabund); (2) on the mean water depth per site (meandepth); (3) adjusted by the area of the site (sweptarea); (4) the log of which is the model offset.

Usage

data(fishing)

Format

A data frame with 147 observations on the following variables.

totabund total fish counted per site
meandepth mean water depth per site
The data come to us from Hosmer and Lemeshow (2000). Called the low birth weight (lbw) data, the response is a binary variable, low, which indicates whether the birth weight of a baby is under 2500g (low=1), or over (low=0).
Usage

data(lbw)

Format

A data frame with 189 observations on the following 10 variables.

low 1=low birthweight baby; 0=norml weight
smoke 1=history of mother smoking; 0=mother nonsmoker
race categorical 1-3: 1=white; 2=black; 3=other
age age of mother: 14-45
lwt weight (lbs) at last menstrual period: 80-250 lbs
ptl number of false of premature labors: 0-3
ht 1=history of hypertension; 0=no hypertension
ui 1=uterine irritability; 0 no irritability
ftv number of physician visits in 1st trimester: 0-6
bwt birth weight in grams: 709 - 4990 gr

Details

lbw is saved as a data frame. Count models can use ftv as a response variable, or convert it to grouped format

Source

Hosmer, D and S. Lemeshow (2000), Applied Logistic Regression, Wiley

References

Examples

data(lbw)
glmbwp <- glm(ftv ~ low + smoke + factor(race), family=poisson, data=lbw)
summary(glmbwp)
exp(coef(glmbwp))
library(MASS)
glmbwnb <- glm.nb(ftv ~ low + smoke + factor(race), data=lbw)
summary(glmbwnb)
exp(coef(glmbwnb))
Description

grouped format of the lbw data. The observation level data come to us from Hosmer and Lemeshow (2000). Grouping is such that lowbw is the numerator, and cases the denominator of a binomial model, or cases may be an offset to the count variable, lowbw. Birthweights under 2500g classifies a low birthweight baby.

Usage

data(lbwgrp)

Format

A data frame with 6 observations on the following 7 variables.

lowbw Number of low weight babies per covariate pattern: 12-60
cases Number of observations with same covariate pattern: 30-165
smoke 1=history of mother smoking; 0=mother nonsmoker
race1 (1/0): Caucasian
race2 (1/0): Black
race3 (1/0): Other
1ow low birth weight (not valid variable in grouped format)

Details

lbwgrp is saved as a data frame. Count models: count response=lowbt; offset=log(cases); Binary: binomial numerator= lowbt; binomial denominator=cases

Source

Hosmer, D and S. Lemeshow (2000), Applied Logistic Regression, Wiley

References

Examples

data(lbwgrp)
glmgp <- glm(lowbw ~ smoke + race2 + race3 + offset(log(cases)), family=poisson, data=lbwgrp)
summary(glmgp)
exp(coef(glmgp))
library(MASS)
glmgb <- glm.nb(lowbw ~ smoke + race2 + race3, data=lbwgrp)
summary(glmgb)
exp(coef(glmgb))

logit_syn

Logistic regression: generic synthetic binary/binomial logistic data and model

Description

logit_syn is a generic function for developing synthetic logistic regression data and a model given user defined specifications.

Usage

logit_syn(nobs=50000, d=1, xv = c(1, 0.5, -1.5))

Arguments

nobs number of observations in model, Default is 50000

d binomial denominator, Default is 1, a binary logistic model. May use a variable containing different denominator values.

xv predictor coefficient values. First argument is intercept. Use as xv = c(intercept, x1_coef, x2_coef, ...)

Details

Create a synthetic logistic regression model using the appropriate arguments. Binomial denominator must be declared. For a binary logistic model, d=1. A variable may be used as the denominator when values differ. See examples.

Value

by binomial logistic numerator; number of successes

sim.data synthetic data set

Author(s)

Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology Andrew Robinson, University of Melbourne, Australia.
References

Hilbe, J.M. (2009), Logistic Regression Models, Chapman & Hall/CRC

See Also

probit_syn

Examples

Binary logistic regression (denominator=1)
sim.data <- logit_syn(nobs = 500, d = 1, xv = c(1, .5, -1.5))
mylogit <- glm(cbind(by, dby) ~ ., family=binomial(link="logit"), data = sim.data)
summary(mylogit)
confint(mylogit)

Binary logistic regression with odds ratios (denominator=1); 3 predictors
sim.data <- logit_syn(nobs = 500, d = 1, xv = c(1, .75, -1.5, 1.15))
mylogit <- glm(cbind(by, dby) ~ ., family=binomial(link="logit"), data = sim.data)
exp(coef(mylogit))
exp(confint(mylogit))

Binomial or grouped logistic regression with defined denominator, den
den <- rep(1:5, each=100, times=1)*100
sim.data <- logit_syn(nobs = 500, d = den, xv = c(1, .5, -1.5))
gby <- glm(cbind(by, dby) ~ ., family=binomial(link="logit"), data = sim.data)
summary(gby)

Not run:
default
sim.data <- logit_syn(nobs=500, d=1, xv = c(2, -.55, 1.15))
dlogit <- glm(cbind(by, dby) ~ ., family=binomial(link="logit"), data = sim.data)
summary(dlogit)

End(Not run)

Description

Data are taken from Loomis (2003). The study relates to a survey taken on reported frequency of
visits to national parks during the year. The survey was taken at park sites, thus incurring possible
effects of endogenous stratification.

Usage

data(loomis)
Format

A data frame with 410 observations on the following 11 variables.

- **anvisits**: number of annual visits to park
- **gender**: 1=male; 0=female
- **income**: income in US dollars per year, categorical: 4 levels
 - **income1**: <= $25000
 - **income2**: > $25000 - $55000
 - **income3**: > $55000 - $95000
 - **income4**: > $95000
- **travel**: travel time, categorical: 3 levels
 - **travel1**: < 0.25 hrs
 - **travel2**: >= 0.25 - < 4 hrs
 - **travel3**: >= 4 hrs

Details

loomis is saved as a data frame. Count models typically use anvisits as response variable. 0 counts are included.

Source

from Loomis (2003)

References

Examples

data(loomis)
glmmp <- glm(anvisits ~ gender + factor(income) + factor(travel), family=poisson, data=loomis)
summary(glmmp)
exp(coef(glmmp))
library(MASS)
glmmlnb <- glm.nb(anvisits ~ gender + factor(income) + factor(travel), data=loomis)
summary(glmmlnb)
exp(coef(glmmlnb))
Description

Data from a subset of the German Socio-Economic Panel (SOEP). The subset was created by Rabe-Hesketh and Skrondal (2005). Only working women are included in these data. Beginning in 1997, German health reform in part entailed a 200 co-payment as well as limits in provider reimbursement. Patients were surveyed for the one year panel (1996) prior to and the one year panel (1998) after reform to assess whether the number of physician visits by patients declined - which was the goal of reform legislation. The response, or variable to be explained by the model, is numvisit, which indicates the number of patient visits to a physician’s office during a three month period.

Usage

data(mdvis)

Format

A data frame with 2,227 observations on the following 13 variables.

- numvisit visits to MD office 3mo prior
- reform 1=interview yr post-reform: 1998;0=pre-reform:1996
- badh 1=bad health; 0 = not bad health
- age Age(yrs 20-60)
- educ education(1:7-10;2=10.5-12;3=HSgrad+)
- educ1 educ1= 7-10 years
- educ2 educ2= 10.5-12 years
- educ3 educ3= post secondary or high school
- agegrp age: 1=20-39; 2=40-49; 3=50-60
- age1 age 20-39
- age2 age 40-49
- age3 age 50-60
- loginc log(household income in DM)

Details

mdvis is saved as a data frame. Count models typically use docvis as response variable. 0 counts are included

Source

References

Hilbe, Joseph M (2009), Logistic Regression Models, Chapman & Hall/CRC

Examples

data(mdvis)
glmmdp <- glm(numvisit ~ reform + factor(educ) + factor(agegrp), family=poisson, data=mdvis)
summary(glmmdp)
exp(coef(glmmdp))
library(MASS)
glmmdnb <- glm.nb(numvisit ~ reform + factor(educ) + factor(agegrp), data=mdvis)
summary(glmmdnb)
exp(coef(glmmdnb))

Description

The US national Medicare inpatient hospital database is referred to as the Medpar data, which is prepared yearly from hospital filing records. Medpar files for each state are also prepared. The full Medpar data consists of 115 variables. The national Medpar has some 14 million records, with one record for each hospitalization. The data in the medpar file comes from 1991 Medicare files for the state of Arizona. The data are limited to only one diagnostic group (DRG 112). Patient data have been randomly selected from the original data.

Usage

data(medpar)

Format

A data frame with 1495 observations on the following 10 variables.

- los length of hospital stay
- hmo Patient belongs to a Health Maintenance Organization, binary
- white Patient identifies themselves as Caucasian, binary
- died Patient died, binary
- age80 Patient age 80 and over, binary
- type Type of admission, categorical
- type1 Elective admission, binary
- type2 Urgent admission, binary
- type3 Elective admission, binary
- provnum Provider ID
Details

medpar is saved as a data frame. Count models use los as response variable. 0 counts are structurally excluded.

Source

References

Hilbe, Joseph M (2014), Modeling Count Data, Cambridge University Press
Hilbe, Joseph M (2009), Logistic Regression Models, Chapman & Hall/CRC
first used in Hardin, JW and JM Hilbe (2001, 2007), Generalized Linear Models and Extensions, Stata Press

Examples

```r
library(MASS)
library(msme)
data(medpar)
glmp <- glm(los ~ hmo + white + factor(type), family=poisson, data=medpar)
summary(glmp)
exp(coef(glmp))
nb2 <- nbinomial(los ~ hmo + white + factor(type), data=medpar)
summary(nb2)
exp(coef(nb2))
glmnb <- glm.nb(los ~ hmo + white + factor(type), data=medpar)
summary(glmnb)
exp(coef(glmnb))
```

ml.nb1

NB1: maximum likelihood linear negative binomial regression

Description

ml.nb1 is a maximum likelihood function for estimating linear negative binomial (NB1) data. Output consists of a table of parameter estimates, standard errors, z-value, and confidence intervals.

Usage

```r
ml.nb1(formula, data, offset=0, start=NULL, verbose=FALSE)
```
Arguments

- **formula**: an object of class "formula": a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
- **data**: a mandatory data frame containing the variables in the model.
- **offset**: this can be used to specify an _a priori_ known component to be included in the linear predictor during fitting. The offset should be provided on the log scale.
- **start**: an optional vector of starting values for the parameters.
- **verbose**: a logical flag to indicate whether the fit information should be printed.

Details

`ml.nb1` is used like `glm.nb`, but without saving ancillary statistics.

Value

The function returns a dataframe with the following components:

- **Estimate**: ML estimate of the parameter
- **SE**: Asymptotic estimate of the standard error of the estimate of the parameter
- **Z**: The Z statistic of the asymptotic hypothesis test that the population value for the parameter is 0.
- **LCL**: Lower 95% confidence interval for the parameter estimate.
- **UCL**: Upper 95% confidence interval for the parameter estimate.

Author(s)

Andrew Robinson, University of Melbourne, Australia, and Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology

References

See Also

`glm.nb`, `ml.nbc`, `ml.nb2`

Examples

```r
# Table 10.8, Hilbe. J.M. (2011), Negative Binomial Regression,
# 2nd ed. Cambridge University Press (adapted)
data(medpar)
medpar$type <- factor(medpar$type)
med.nb1 <- ml.nb1(los ~ hmo + white + type, data = medpar)
med.nb1
```
Description

`ml.nb2` is a maximum likelihood function for estimating linear negative binomial (NB2) data. Output consists of a table of parameter estimates, standard errors, z-value, and confidence intervals.

Usage

```r
ml.nb2(formula, data, offset=0, start=NULL, verbose=FALSE)
```

Arguments

- **formula**: an object of class "formula": a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
- **data**: a mandatory data frame containing the variables in the model.
- **offset**: this can be used to specify an _a priori_ known component to be included in the linear predictor during fitting. The offset should be provided on the log scale.
- **start**: an optional vector of starting values for the parameters.
- **verbose**: a logical flag to indicate whether the fit information should be printed.

Details

`ml.nb2` is used like glm.nb, but without saving ancillary statistics.

Value

The function returns a dataframe with the following components:

- **Estimate**: ML estimate of the parameter
- **SE**: Asymptotic estimate of the standard error of the estimate of the parameter
- **Z**: The Z statistic of the asymptotic hypothesis test that the population value for the parameter is 0.
- **LCL**: Lower 95% confidence interval for the parameter estimate.
- **UCL**: Upper 95% confidence interval for the parameter estimate.

Author(s)

Andrew Robinson, University of Melbourne, Australia, and Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology

References

See Also

`glm.nb, ml.nbc, ml.nb1`

Examples

```r
# Table 8.7, Hilbe, J. M. (2011), Negative Binomial Regression,
# 2nd ed. Cambridge University Press (adapted)
data(medpar)
medpar$type <- factor(medpar$type)
med.nb2 <- ml.nb2(los ~ hmo + white + type, data = medpar)
med.nb2
```

```r
ml.nbc
```

NBC: maximum likelihood linear negative binomial regression

Description

`ml.nbc` is a maximum likelihood function for estimating canonical linear negative binomial (NB-C) data.

Usage

```r
ml.nbc(formula, data, start=NULL, verbose=FALSE)
```

Arguments

- `formula`: an object of class "formula": a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
- `data`: a mandatory data frame containing the variables in the model.
- `start`: an optional vector of starting values for the parameters.
- `verbose`: a logical flag to indicate whether the fit information should be printed.

Details

`ml.nbc` is used like `glm.nb`, but without saving ancillary statistics.

Value

The function returns a dataframe with the following components:

- `Estimate`: ML estimate of the parameter
- `SE`: Asymptotic estimate of the standard error of the estimate of the parameter
- `Z`: The Z statistic of the asymptotic hypothesis test that the population value for the parameter is 0.
- `LCL`: Lower 95% confidence interval for the parameter estimate.
- `UCL`: Upper 95% confidence interval for the parameter estimate.
ml.pois

Author(s)
Andrew Robinson, University of Melbourne, Australia, and Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology

References

See Also
glm.nb, ml.nb1, ml.nb2

Examples
Table 10.12, Hilbe, J.M. (2011), Negative Binomial Regression,
2nd ed. Cambridge University Press (adapted)

Not run:
data(medpar)
nobs <- 50000
x2 <- runif(nobs)
x1 <- runif(nobs)
xb <- 1.25*x1 + .1*x2 - 1.5
mu <- 1/(exp(-xb)-1)
p <- 1/(1+mu)
r <- 1
gcy <- rnbinom(nobs, size=r, prob = p)
test <- data.frame(gcy, x1, x2)
nbc <- ml.nb(gcy ~ x1 + x2, data=test)
nbc

End(Not run)

ml.pois

NB2: maximum likelihood Poisson regression

Description
ml.pois is a maximum likelihood function for estimating Poisson data. Output consists of a table of parameter estimates, standard errors, z-value, and confidence intervals. An offset may be declared as an option.

Usage
ml.pois(formula, data, offset=0, start=NULL, verbose=FALSE)
Arguments

- **formula**: an object of class "formula": a symbolic description of the model to be fitted.
- **data**: a mandatory data frame containing the variables in the model.
- **offset**: this can be used to specify an _a priori_ known component to be included in the linear predictor during fitting. The offset should be provided on the log scale.
- **start**: an optional vector of starting values for the parameters.
- **verbose**: a logical flag to indicate whether the fit information should be printed.

Details

`ml.pois` is used like `glm`, but does not provide ancillary statistics.

Value

The function returns a dataframe with the following components:

- **Estimate**: ML estimate of the parameters
- **SE**: Asymptotic estimate of the standard error of the estimate of the parameter
- **Z**: The Z statistic of the asymptotic hypothesis test that the population value for the parameter is 0.
- **LCL**: Lower 95% confidence interval for the parameter estimates.
- **UCL**: Upper 95% confidence interval for the parameter estimates.

Author(s)

Andrew Robinson, University of Melbourne, Australia, and Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology

References

See Also

- `glm.nb`, `ml.nbc`, `ml.nb1`

Examples

```r
# Table 8.7, Hilbe. J.M. (2011), Negative Binomial Regression, # 2nd ed. Cambridge University Press (adapted)
data(medpar)
medpar$type <- factor(medpar$type)
med pois <- ml.pois(los ~ hmo + white + type, data = medpar)
med pois

data(rwm5yr)
lyear <- log(rwm5yr$year)
rwm.poi <- ml.pois(docvis ~ outwork + age + female, offset=lyear, data =
```
modelfit

modelfit is used following a glm() or glm.nb() model to produce a list of model fit statistics.

Usage
modelfit(x)

Arguments
x the only argument is the name of the fitted glm or glm.nb function model

Details
modelfit is to be used as a post-estimation function, following the use of glm() or glm.nb().

Value
obs number of model observations
aic AIC statistic
xvars number of model predictors
rdoF residual degrees of freedom
aic_n AIC, 'aic'/obs'
ll log-likelihood
bic_r BIC - Raftery parameterization
bic_l BIC - log-likelihood Standard definition (Stata)
bic_qh Hannan-Quinn IC statistic (Limdep)

Note
modelfit.r must be loaded into memory in order to be effective. Users may past modelfit.r into script editor to run, as well as load it.

Author(s)
Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of technology
myTable

References
Hilbe, J.M. (2009), Logistic Regression Models, Chapman Hall/CRC

See Also
glm, glm.nb

Examples
Hilbe (2011), Table 9.17
library(MASS)
data(lbwgrp)

nb9_3 <- glm.nb(lowbw ~ smoke + race2 + race3 + offset(log(cases)), data=lbwgrp)
summary(nb9_3)
exp(coef(nb9_3))
modelfit(nb9_3)

myTable

Description
mytable is used to produce a table of frequencies, proportion and cumulative proportions for a count variable

Usage
myTable(x)

Arguments

x the only argument is the name of the count variable

Details
myTable is used as either a diagnostic to view the distribution of a count variable, or as a frequency distribution display in its own right. myTable is given in Table 9.40 in Hilbe (2011).

Value

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>count value</td>
</tr>
<tr>
<td>Freq</td>
<td>Frequency of count</td>
</tr>
<tr>
<td>Prop</td>
<td>Proportion</td>
</tr>
<tr>
<td>CumProp</td>
<td>Cumulative proportion</td>
</tr>
</tbody>
</table>
Author(s)

Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology

References

Hilbe, J.M. (2009), Logistic Regression Models, Chapman Hall/CRC

See Also

modelfit

Examples

data(medpar)
myTable(medpar$los)

nb1_syn

Negative binomial (NB1): generic synthetic linear negative binomial data and model

Description

nb1_syn is a generic function for developing synthetic NB1 data and a model given user defined specifications.

Usage

nb1_syn(nobs=50000, delta=1, xv = c(1, 0.75, -1.25))

Arguments

- `nobs` number of observations in model, Default is 50000
- `delta` NB1 heterogeneity or ancillary parameter
- `xv` predictor coefficient values. First argument is intercept. Use as xv = c(intercept, x1_coef, x2_coef, ...)

Details

Create a synthetic linear negative binomial (NB1) regression model using the appropriate arguments. Model data with predictors indicated as a group with a period (.). See examples.

Data can be modeled using the ml.nb1.r function in the COUNT package, or by using the gamlss function in the gamlss package, using the "family=NBII" option.
Value

- nb1y: Negative binomial (NB1) response; number of counts
- sim.data: synthetic data set

Author(s)

Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology
Andrew Robinson, University of Melbourne, Australia.

References

See Also

- nb2_syn, nbc_syn

Examples

```r
sim.data <- nb1_syn(nobs = 5000, delta = .5, xv = c(.5, 1.25, -1.5))
mynb1 <- ml.nb1(nb1y ~ ., data = sim.data)
mynb1

## Not run:
# use gamlss to model NB1 data
library(gamlss)
sim.data <- nb1_syn(nobs = 5000, delta = .5, xv = c(.5, 1.25, -1.5))
mynb1 <- gamlss( nb1y ~ ., family=NB2I, data = sim.data)
mynb1

## End(Not run)

## Not run:
# default
sim.data <- nb1_syn()
dnb1 <- ml.nb1(nb1y ~ ., data = sim.data)
dnb1

## End(Not run)
```

<table>
<thead>
<tr>
<th>nb2.obs.pred</th>
<th>Table of negative binomial counts: observed vs predicted proportions and difference</th>
</tr>
</thead>
</table>
Description

nb2.obs.pred is used to produce a table of a negative binomial model count response with mean observed vs mean predicted proportions, and their difference.

Usage

nb2.obs.pred(len, model)

Arguments

len highest count for the table
model name of the negative binomial model created

Details

nb2.obs.pred is used to determine where disparities exist in the mean observed and predicted proportions in the range of model counts. nb2.obs.pred is used in Table 9.28 and other places in Hilbe (2011). nb2.obs.pred follows glm.nb(), where both y=TRUE and model=TRUE options must be used.

Value

Count count value
obsPropFreq Observed proportion of counts
avgp Predicted proportion of counts
Diff Difference in observed vs predicted

Author(s)

Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology
Andrew Robinson, University of Melbourne, Australia

References

See Also

myTable

Examples

library(MASS)
data(medpar)
mdpar <- glm.nb(los ~ hmo+white+type2+type3, data=medpar, y=TRUE, model=TRUE)
nb2.obs.pred(len=25, model=mdpar)
nb2_syn

Negative binomial (NB2): generic synthetic negative binomial data and model

Description

nb2_syn is a generic function for developing synthetic NB2 data and a model given user defined specifications.

Usage

nb2_syn(nobs = 50000, off = 0, alpha = 1, xv = c(1, 0.75, -1.5))

Arguments

nobs number of observations in model, Default is 50000
alpha NB2 heterogeneity or ancillary parameter
off optional: log of offset variable
xv predictor coefficient values. First argument is intercept. Use as xv = c(intercept, x1_coef, x2_coef, ...)

Details

Create a synthetic negative binomial (NB2) regression model using the appropriate arguments. Model data with predictors indicated as a group with a period (.). Offset optional. If no offset is desired, drop "off= loff" from nb2_syn function call and "+ loff" from glm.nb function call. See examples.

Data can be estimated using the glm.nb() function, or the ml.nb2() function in the COUNT package, or by using the gamlss function in the gamlss package, with "family=NBI" option.

Value

nby Negative binomial response; number of counts
sim.data synthetic data set

Author(s)

Andrew Robinson, University of Melbourne, Australia, and Joseph M. Hilbe, Arizona State University, Jet Propulsion Laboratory, California Institute of Technology

References

See Also

poisson_syn, nb1_syn, nbc_syn
Examples

library(MASS)

sim.data <- nb2_syn(nobs = 500, alpha = .5, xv = c(2, .75, -1.25))
mynb2 <- glm.nb(nby ~ ., data = sim.data)
summary(mynb2)
confint(mynb2)

with offset
oset <- rep(1:5, each=100, times=1)*100
loff <- log(oset)
sim.data <- nb2_syn(nobs = 500, off = loff, alpha = .5, xv = c(1.2, -.75, .25, -1.3))
mypof <- glm.nb(nby ~ . + loff, data = sim.data)
summary(mypof)
confint(mypof)

without offset, exponentiated coefficients, CI's
sim.data <- nb2_syn(nobs = 500, alpha = .75, xv = c(1, .5, -1.4))
mynbf <- glm.nb(nby ~ ., data = sim.data)
exp(coef(mynbf))
exp(confint(mynbf))

Not run:
default, without offset
sim.data <- nb2_syn()
dnb2 <- glm.nb(nby ~ ., data = sim.data)
summary(dnb2)

End(Not run)

use ml.nb2.r function
sim.data <- nb2_syn(nobs = 500, alpha = .5, xv = c(2, .75, -1.25))
mynbx <- ml.nb2(nby ~ ., data = sim.data)
mynbx

Not run:
use gamlss function for modeling data after sim.data created
library(gamlss)
sim.data <- nb2_syn(nobs = 500, alpha = .5, xv = c(2, .75, -1.25))
gamb <- gamlss(nby ~ ., family=NB1, data = sim.data)
gamb

End(Not run)
Description

nbc_syn is a generic function for developing synthetic NB-C data and a model given user defined specifications.

Usage

nbc_syn(nobs=50000, alpha=1.5, xv = c(-1.5, -1.25, -.1))

Arguments

 nobs number of observations in model; Default is 50000
 alpha NB-C heterogeneity or ancillary parameter
 xv predictor coefficient values. First argument is intercept. Use as xv = c(intercept, x1_coef, x2_coef, ...)

Details

Create a synthetic canonical negative binomial (NB-C) regression model using the appropriate arguments. Model data with predictors indicated as a group with a period (.). Data can be modeled using the ml.nbc.r function in the COUNT package. See examples.

Value

 nbcy Canonical negative binomial (NB-C) response; number of counts
 sim.data synthetic data set

Author(s)

Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology Andrew Robinson, Universty of Melbourne, Australia.

References

See Also

 nb2_syn, nb1_syn

Examples

 ## Not run:
 sim.data <- nbc_syn(nobs = 50000, alpha = 1.5, xv = c(-1.5, -1.25, -.1))
 mynbc <- ml.nbc(nbcy ~ ., data = sim.data)
 mynbc

 # default
 sim.data <- nbc_syn()
Description

Squirrel data set (nuts) from Zuur, Hilbe, and Ieno (2013). As originally reported by Flaherty et al (2012), researchers recorded information about squirrel behavior and forest attributes across various plots in Scotland’s Abernathy Forest. The study focused on the following variables. response cones number of cones stripped by red squirrels per plot predictor sntrees standardized number of trees per plot sheight standardized mean tree height per plot scover standardized percentage of canopy cover per plot The stripped cone count was only taken when the mean diameter of trees was under 0.6m (dbh).

Usage

data(nuts)

Format

A data frame with 52 observations on the following 5 variables.

- cones: total fish counted per site
- ntrees: mean water depth per site
- dbh: adjusted area of site
- height: total fish counted per site
- cover: mean water depth per site
- sntrees: standardized mean water depth per site
- sheight: standardized total fish counted per site
- scover: standardized mean water depth per site

Details

nuts is saved as a data frame. Count models use ntrees as response variable. Counts start at 3

Source

Zuur, Hilbe, Ieno (2013), A Beginner’s Guide to GLM and GLMM using R,

References

Examples

data(nuts)
nut <- subset(nuts, dbh<.6)
summary(P0 <- glm(cones ~ sntrees + sheight + scover, family=quasipoisson, data=nut))

<table>
<thead>
<tr>
<th>poi.obs.pred</th>
<th>Table of Poisson counts: observed vs predicted proportions and difference</th>
</tr>
</thead>
</table>

Description

poi.obs.pred is used to produce a table of a Poisson model count response with mean observed vs mean predicted proportions, and their difference.

Usage

poi.obs.pred(len, model)

Arguments

len highest count for the table
model name of the Poisson model created

Details

poi.obs.pred is used to determine where disparities exist in the mean observed and predicted proportions in the range of model counts. poi.obs.pred is used in Table 6.15 and other places in Hilbe (2011). poi.obs.pred follows glm(), where both y=TRUE and model=TRUE options must be used.

Value

<table>
<thead>
<tr>
<th>Count</th>
<th>count value</th>
</tr>
</thead>
<tbody>
<tr>
<td>obsPropFreq</td>
<td>Observed proportion of counts</td>
</tr>
<tr>
<td>avgp</td>
<td>Predicted proportion of counts</td>
</tr>
<tr>
<td>Diff</td>
<td>Difference in observed vs predicted</td>
</tr>
</tbody>
</table>

Author(s)

Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology Andrew Robinson, University of Melbourne, Australia

References

poisson_syn

See Also

myTable

Examples

data(medpar)
mdpar <- glm(lom ~ hmo+white+type2+type3, family=poisson, data=medpar, y=TRUE, model=TRUE)
poi.obs.pred(len=25, model=mdpar)

Description

poisson_syn is a generic function for developing synthetic Poisson data and a model given user
defined specifications.

Usage

poisson_syn(nobs = 50000, off = 0, xv = c(1, -.5, 1))

Arguments

nobs number of observations in model, Default is 50000
off optional: log of offset variable
xv predictor coefficient values. First argument is intercept. Use as xv = c(intercept
 , x1_coef, x2_coef, ...)

Details

Create a synthetic Poisson regression model using the appropriate arguments. Offset optional. Model
data with predictors indicated as a group with a period (.). See examples.

Value

py Poisson response; number of counts
sim.data synthetic data set

Author(s)

Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of
Technology Andrew Robinson, University of Melbourne, Australia.

References

probit_syn

See Also

nb2_syn

Examples

standard Poisson model with two predictors and intercept
sim.data <- poisson_syn(nobs = 500, xv = c(2, .75, -1.25))
mypo <- glm(py ~ ., family=poisson, data = sim.data)
summary(mypo)
confint(mypo)

Poisson with offset and three predictors
oset <- rep(1:5, each=100, times=1)*100
loff <- log(oset)
sim.data <- poisson_syn(nobs = 500, off = loff, xv = c(1.2, -.75, .25, -1.3))
mypo <- glm(py ~ . + loff, family=poisson, data = sim.data)
summary(mypo)
confint(mypo)

Poisson without offset, exponentiated coefficients, CI's
sim.data <- poisson_syn(nobs = 500, xv = c(2, .75, -1.25))
mypo <- glm(py ~ ., family=poisson, data = sim.data)
exp(coef(mypo))
exp(confint(mypo))

Not run:
default (without offset)
sim.data <- poisson_syn()
dmypo <- glm(py ~ ., family=poisson, data = sim.data)
summary(dmypo)

End(Not run)

probit_syn | Probit regression : generic synthetic binary/binomial probit data and model

Description

probit_syn is a generic function for developing synthetic probit regression data and a model given user defined specifications.

Usage

probit_syn(nobs=50000, d=1, xv = c(1, 0.5, -1.5))
Arguments

nobs number of observations in model, Default is 50000

d binomial denominator, Default is 1, a binary probit model. May use a variable containing different denominator values.

xv predictor coefficient values. First argument is intercept. Use as xv = c(intercept, x1_coef, x2_coef, ...)

Details

Create a synthetic probit regression model using the appropriate arguments. Binomial denominator must be declared. For a binary probit model, d=1. A variable may be used as the denominator when values differ. See examples.

Value

py binomial probit numerator; number of successes

sim.data synthetic data set

Author(s)

Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology

Andrew Robinson, University of Melbourne, Australia.

References

Hilbe, J.M. (2009), Logistic Regression Models, Chapman & Hall/CRC

See Also

logit_syn

Examples

Binary probit regression (denominator=1)
sim.data <- probit_syn(nobs = 5000, d = 1, xv = c(1, .5, -1.5))
myprobit <- glm(cbind(py, dpy) ~ ., family=binomial(link="probit"), data = sim.data)
summary(myprobit)
confint(myprobit)

Binary probit regression with 3 predictors (denominator=1)
sim.data <- probit_syn(nobs = 5000, d = 1, xv = c(1, .75, -1.5, 1.15))
myprobit <- glm(cbind(py, dpy) ~ ., family=binomial(link="probit"), data = sim.data)
summary(myprobit)
confint(myprobit)

Binomial or grouped probit regression with defined denominator, den
den <- rep(1:5, each=1000, times=1)*100
sim.data <- probit_syn(nobs = 5000, d = den, xv = c(1, .5, -1.5))
rwm <- glm(cbind(py,dpy) ~ ., family=binomial(link="probit"), data = sim.data)
summary(gpy)

Not run:
default
sim.data <- probit_syn()
dprobit <- glm(cbind(py,dpy) ~ ., family=binomial(link="probit"), data = sim.data)
summary(dprobit)

End(Not run)

rwm

Description

German health registry for the years 1984-1988. Health information for years prior to health reform.

Usage

data(rwm)

Format

A data frame with 27,326 observations on the following 4 variables.

docvis number of visits to doctor during year (0-121)
age age: 25-64
educ years of formal education (7-18)
hhninc household yearly income in DM/1000)

Details

rwm is saved as a data frame. Count models typically use docvis as response variable. 0 counts are included

Source

German Health Reform Registry, years pre-reform 1984-1988, From Hilbe and Greene (2008)

References

Examples

```r
data(rwm)
glmwp <- glm(docvis ~ age + educ + hhninc, family=poisson, data=rwm)
summary(glmwp)
exp(coef(glmwp))
library(MASS)
glmwnb <- glm.nb(docvis ~ age + educ + hhninc, data=rwm)
summary(glmwnb)
exp(coef(glmwnb))
```

Description

German health registry for the year 1984.

Usage

```r
data(rwm1984)
```

Format

A data frame with 3,874 observations on the following 17 variables.

- **docvis**: number of visits to doctor during year (0-121)
- **hospvis**: number of days in hospital during year (0-51)
- **edlevel**: educational level (categorical: 1-4)
- **age**: age: 25-64
- **outwork**: out of work=1; 0=working
- **female**: female=1; 0=male
- **married**: married=1; 0=not married
- **kids**: have children=1; no children=0
- **hhninc**: household yearly income in marks (in Marks)
- **educ**: years of formal education (7-18)
- **self**: self-employed=1; not self employed=0
- **edlevel1**: (1/0) not high school graduate
- **edlevel2**: (1/0) high school graduate
- **edlevel3**: (1/0) university/college
- **edlevel4**: (1/0) graduate school

Details

rwm1984 is saved as a data frame. Count models typically use docvis as response variable. 0 counts are included
Source

German Health Reform Registry, year=1984, in Hilbe and Greene (2007)

References

Examples

```r
library(MASS)
library(msme)
data(rwm1984)

glmrp <- glm(docvis ~ outwork + female + age + factor(edlevel), family=poisson, data=rwm1984)
summary(glmrp)
exp(coef(glmrp))

summary(nb2 <- nbinomial(docvis ~ outwork + female + age + factor(edlevel), data=rwm1984))
exp(coef(nb2))

summary(glmrnb <- glm.nb(docvis ~ outwork + female + age + factor(edlevel), data=rwm1984))
exp(coef(glmrnb))
```

Description

German health registry for the years 1984-1988. Health information for years immediately prior to health reform.

Usage

data(rwm5yr)

Format

A data frame with 19,609 observations on the following 17 variables.

- **id**: patient ID (1=7028)
- **docvis**: number of visits to doctor during year (0-121)
- **hospvis**: number of days in hospital during year (0-51)
- **edlevel**: educational level (categorical: 1-4)
age: 25-64
outwork: out of work=1; 0=working
female: female=1; 0=male
married: married=1; 0=not married
kids: have children=1; no children=0
hhinc: household yearly income in marks (in Marks)
educ: years of formal education (7-18)
sel: self-employed=1; not self employed=0
edlevel1: (1/0) not high school graduate
edlevel2: (1/0) high school graduate
edlevel3: (1/0) university/college
edlevel4: (1/0) graduate school

Details
rwm5yr is saved as a data frame. Count models typically use docvis as response variable. 0 counts are included

Source
German Health Reform Registry, years pre-reform 1984-1988, in Hilbe and Greene (2007)

References
Hilbe, Joseph M (2014), Modeling Count Data, Cambridge University Press

Examples
library(MASS)
data(rwm5yr)
glmrp <- glm(docvis ~ outwork + female + age + factor(edlevel), family=poisson, data=rwm5yr)
summary(glmrp)
exp(coef(glmrp))

Not run:
library(msme)
nb2 <- nbinomial(docvis ~ outwork + female + age + factor(edlevel), data=rwm5yr)
summary(nb2)
exp(coef(nb2))
glmnb <- glm.nb(docvis ~ outwork + female + age + factor(edlevel), data=rwm5yr)
summary(glmnb)
exp(coef(glmnb))

End(Not run)
Description

Data set used in McCullagh & Nelder (1989), Hardin & Hilbe (2003), and other sources. The data contains values on the number of reported accidents for ships belonging to a company over a given time period. When a ship was constructed is also recorded.

Usage

data(ships)

Format

A data frame with 40 observations on the following 7 variables.

- **accident**: number of shipping accidents
- **op**: 1=ship operated 1975-1979; 0=1965-74
- **co.65.69**: ship was in construction 1965-1969 (1/0)
- **co.70.74**: ship was in construction 1970-1974 (1/0)
- **co.75.79**: ship was in construction 1975-1979 (1/0)
- **service**: months in service
- **ship**: ship identification: 1-5

Details

ships is saved as a data frame. Count models use accident as the response variable, with log(service) as the offset. ship can be used as a panel identifier.

Source

References

Hilbe, Joseph M (2009), Logistic Regression Models, Chapman & Hall/CRC
Hardin, JW and JM Hilbe (2001, 2007), Generalized Linear Models and Extensions, Stata Press
Examples

```r
data(ships)
glmshp <- glm(accident ~ op + co.70.74 + co.75.79 + offset(log(service)),
              family=poisson, data=ships)
summary(glmshp)
exp(coef(glmshp))
library(MASS)
glmshnb <- glm.nb(accident ~ op + co.70.74 + co.75.79 + offset(log(service)),
                  data=ships)
summary(glmshnb)
exp(coef(glmshnb))
## Not run:
library(gee)
shipgee <- gee(accident ~ op + co.70.74 + co.75.79 + offset(log(service)),
                data=ships, family=poisson, corstr="exchangeable", id=ship)
summary(shipgee)
## End(Not run)
```

Description

A simple data set with only 6 observations.

Usage

```r
data(smoking)
```

Format

A data frame with 6 observations on the following 4 variables.

- **systolic blood pressure of subject**
- **male** 1=male; 0=female
- **smoker** 1=hist of smoking; 0= no hist of smoking
- **age** age of subject

Details

smoking is saved as a data frame.

Source

none
References

Hilbe, Joseph M (2014), Modeling Count Data, Cambridge University Press

Examples

```r
sbp <- c(131,132,122,119,123,115)
male <- c(1,1,1,0,0,0)
smoker <- c(1,1,0,0,1,0)
age <- c(34,36,30,32,26,23)
summary(reg1 <- lm(sbp~ male+smoker+age))
```

titanic
titanic
titanic
titanic

description

The data is an observation-based version of the 1912 Titanic passenger survival log.

Usage

data(titanic)

Format

A data frame with 1316 observations on the following 4 variables.

- class: a factor with levels 1st class 2nd class 3rd class crew
- age: a factor with levels child adults
- sex: a factor with levels women man
- survived: a factor with levels no yes

details

Titanic is saved as a data frame. Used to assess risk ratios

Source

Found in many other texts

References

Hilbe, Joseph M (2014), Modeling Count Data, Cambridge University Press
Hilbe, Joseph M (2009), Logistic Regression Models, Chapman & Hall/CRC
Examples

```r
data(titanic)
titanic$survival <- titanic$survived == "yes"
glmlr <- glm(survival ~ age + sex + factor(class), family=binomial, data=titanic)
summary(glmlr)
```

Description

The data is an grouped version of the 1912 Titanic passenger survival log.

Usage

```r
data(titanicgrp)
```

Format

A data frame with 12 observations on the following 5 variables.

- `survive` number of passengers who survived
- `cases` number of passengers with same pattern of covariates
- `age` 1=adult; 0=child
- `sex` 1=Male; 0=female
- `class` ticket class 1= 1st class; 2= second class; 3= third class

Details

titanicgrp is saved as a data frame. Used to assess risk ratios

Source

Found in many other texts

References

Hilbe, Joseph M (2014), Modeling Count Data, Cambridge University Press
Hilbe, Joseph M (2009), Logistic Regression Models, Chapman & Hall/CRC
Examples

```r
library(MASS)
library(msme)
data(titanicgrp)
glmlr <- glm(survive ~ age + sex + factor(class) + offset(log(cases)),
             family=poisson, data=titanicgrp)
summary(glmlr)
exp(coef(glmlr))

lcases <- titanicgrp$cases
nb2o <- nbinomial(survive ~ age + sex + factor(class),
                 formula2 =~ age + sex,
                 offset = lcases,
                 mean.link="log",
                 scale.link="log_s",
                 data=titanicgrp)

summary(nb2o)
expc nef (nb2o))
```
Index

*Topic Poisson
 poisson_syn, 35
*Topic binomial
 logit_syn, 14
 probit_syn, 36
*Topic datasets
 affairs, 2
 azcabgptca, 4
 azdrg112, 5
 azpro, 6
 azprocedure, 7
 badhealth, 8
 fasttrakg, 9
 fishing, 10
 lbw, 11
 lbwgrp, 13
 loomis, 15
 mdvis, 17
 medpar, 18
 nuts, 33
 rwm, 38
 rwm1984, 39
 rwm5yr, 40
 ships, 42
 smoking, 43
 titanic, 44
 titanicgrp, 45
*Topic logit
 logit_syn, 14
*Topic models
 logit_syn, 14
 ml.nb1, 19
 ml.nb2, 21
 ml.nbc, 22
 ml.pois, 23
 modelfit, 25
 nb1_syn, 27
 nb2_syn, 30
 nbc_syn, 31
 poisson_syn, 35
 probit_syn, 36
*Topic negative binomial
 nb1_syn, 27
 nb2_syn, 30
 nbc_syn, 31
*Topic probit
 probit_syn, 36
*Topic table
 myTable, 26
 lb2.obs.pred, 28
 po1.obs.pred, 34
 affairs, 2
 azcabgptca, 4
 azdrg112, 5
 azpro, 6
 azprocedure, 7
 badhealth, 8
 fasttrakg, 9
 fishing, 10
 glm, 26
 glm.nb, 20, 22–24, 26
 lbw, 11
 lbwgrp, 13
 logit_syn, 14, 37
 loomis, 15
 mdvis, 17
 medpar, 18
 ml.nb1, 19, 22–24
 ml.nb2, 20, 21, 23
 ml.nbc, 20, 22, 22, 24
 ml.pois, 23
 modelfit, 25, 27
 myTable, 26, 29, 35
nb1_syn, 27, 30, 32
nb2.obs.pred, 28
nb2_syn, 28, 30, 32, 36
nbc_syn, 28, 30, 31
nuts, 33

poi.obs.pred, 34
poisson_syn, 30, 35
probit_syn, 15, 36

rwm, 38
rwm1984, 39
rwm5yr, 40

ships, 42
smoking, 43

titanic, 44
titanicgrp, 45