Package ‘CBPS’

February 19, 2015

Version 0.9
Date 2014-08-11
Title R Package for Covariate Balancing Propensity Score
Author
Christian Fong <christianfong@stanford.edu>, Marc Ratkovic <ratkovic@princeton.edu>, Kosuke Imai <kimai@princeton.edu>
Maintainer Christian Fong <christianfong@stanford.edu>
Depends R (>= 2.14), MASS, MatchIt, nnet, numDeriv
Imports
Description CBPS is an R package that implements the covariate balancing propensity score proposed by Imai and Ratkovic (2014; JRSSB). The propensity score is estimated such that it maximizes the resulting covariate balance as well as the prediction of treatment assignment. The method, therefore, avoids an iteration between model fitting and balance checking. The package also implements several extensions of the CBPS beyond the cross-sectional, binary treatment setting. The current version implements the CBPS for longitudinal settings so that it can be used in conjunction with marginal structural models (Imai and Ratkovic, 2013a), treatments with three- and four-valued treatment variables, continuous-valued treatments (Fong, Imai, and Ratkovic), and the situation with multiple distinct binary treatments administered simultaneously. In the future it will be extended to other settings including the generalization of experimental and instrumental variable estimates.

LazyLoad yes
LazyData yes
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2014-08-14 00:49:56

R topics documented:

balance ... 2
Blackwell ... 3
balance

CBMSM ... 4
CBPS ... 6
LaLonde ... 10
plot.CBMSM ... 11
plot.CBPS ... 12
summary.CBPS ... 13
vcov.CBPS ... 14

Index 16

Optimal Covariate Balance

Description

Returns the mean and standardized mean associated with each treatment group, before and after weighting.

Usage

S3 method for class 'CBPS'
balance(object, ...)

Arguments

<table>
<thead>
<tr>
<th>object</th>
<th>A CBPS (or CBMSM) object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>Additional arguments to be passed to balance.</td>
</tr>
</tbody>
</table>

Details

For binary and multi-valued treatments as well as marginal structural models, each of the matrices' rows are the covariates and whose columns are the weighted mean, and standardized mean associated with each treatment group. The standardized mean is the weighted mean divided by the standard deviation of the covariate for the whole population. For continuous treatments, returns the absolute Pearson correlation between the treatment and each covariate.

Value

Returns a list of two matrices, "original" (before weighting) and "balanced" (after weighting).

Author(s)

Christian Fong, Marc Ratkovic, and Kosuke Imai.
Examples

```r
## Not run:
###
### Example: Optimal Covariate Balance
###
# Run for 4-treatment case
set.seed(1)
# Generate random X and underlying coefficients for probability.
# Determine probs and treatments.
X<-cbind(rep(1,1000), mvrnorm(1000,c(0,0,0),
            Sigma=matrix(c(5,.5,-.03,.5,1,-.27,-.03,-.27,1),3,3)))
beta<-matrix(rnorm(12),4,3)
baseline.prob<-apply(X*%*%beta,1,function(x) (1+sum(exp(x)))^-1)
prob<-cbind(baseline.prob, exp(X*%*%beta[,1])*baseline.prob,
            exp(X*%*%beta[,2])*baseline.prob,
            exp(X*%*%beta[,3])*baseline.prob)
treat.latent<-runif(1000)
treat<-ifelse(treat.latent < prob[,1], 1,
       ifelse(treat.latent < (prob[,1] + prob[,2]), 2,
       ifelse(treat.latent < (prob[,1] + prob[,2] + prob[,3]),
               3, 4)))
X<-X[,1]
fit4<-CBPS(treat ~ X, ATT = FALSE)
balance(fit4)
## End(Not run)
```

Blackwell

Blackwell Data for Covariate Balancing Propensity Score

Description

This data set gives the outcomes as well as treatment assignments and covariates for the example from Blackwell (2013).

Usage

Blackwell

Format

A data frame consisting of 13 columns (including treatment assignment, time, and identifier vectors) and 570 observations.
Source

Data from the National Supported Work Study. A benchmark matching dataset. d.gone.neg is the treatment. d.gone.neg.l1, d.gone.neg.l2, and d.gone.neg.l3 are lagged treatment variables. camp.length, deminc, base.poll, base.und, and office covariates, year and time are alternative specifications of the time variable. demName is the identifier, and demprcnt is the outcome.

References

CBMSM Covariate Balancing Propensity Score (CBPS) for Marginal Structural Models

Description

CBMSM estimates propensity scores such that both covariate balance and prediction of treatment assignment are maximized. With longitudinal data, the method returns marginal structural model weights that can be entered directly into a linear model. The method also handles multiple binary treatments administered concurrently.

Usage

\[
\text{CBMSM(} \text{formula, id, time, data, type="MSM", twostep = TRUE, msm.variance = "approx", time.vary = FALSE, ...)}
\]

\[
\text{CBMSM.fit(} \text{treat, X, id, time, MultiBin.fit, twostep, msm.variance, time.vary, ...)}
\]

Arguments

- **formula**: A list of formulas of the form treat ~ X. The function assumes that there is one formula for each time, and they are ordered from the first time to the last time.
- **id**: A vector which identifies the unit associated with each row of treat and X.
- **time**: A vector which identifies the time period associated with each row of treat and X.
- **data**: An optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which CBMSM is called.
- **twostep**: Set to TRUE to use a two-step estimator, which will run substantially faster than continuous-updating. Default is FALSE, which uses the continuous-updating estimator described by Imai and Ratkovic (2014).
- **msm.variance**: Default is FALSE, which uses the low-rank approximation of the variance described in Imai and Ratkovic (2014). Set to TRUE to use the full variance matrix.
time.vary Default is FALSE, which uses the same coefficients across time period. Set to TRUE to fit one set per time period.
treat A vector of treatment assignments. For N observations over T time periods, the length of treat should be N*T.
X A covariate matrix. For N observations over T time periods, X should have N*T rows.
type "MSM" for a marginal structural model, with multiple time periods or "Multi-Bin" for multiple binary treatments at the same time period.
MultiBin.fit A parameter for whether the multiple binary treatments occur concurrently (FALSE) or over consecutive time periods (TRUE) as in a marginal structural model. Setting type = "MultiBin" when calling CBMSM will set MultiBin.fit to TRUE when CBMSM.fit is called.
... Other parameters to be passed through to optim()

Details
Fits covariate balancing propensity scores for marginal structural models.

Value

weights The optimal weights.
fitted.values The fitted propensity score for each observation.
y The treatment vector used.
x The covariate matrix.
id The vector id used in CBMSM.fit.
time The vector time used in CBMSM.fit.
model The model frame.
call The matched call.
formula The formula supplied.
data The data argument.

Author(s)
Marc Ratkovic, Christian Fong, and Kosuke Imai; The CBMSM function is based on the code for version 2.15.0 of the glm function implemented in the stats package, originally written by Simon Davies. This documentation is likewise modeled on the documentation for glm and borrows its language where the arguments and values are the same.

References
See Also

plot.CBMSM

Examples

```r
## Not run:
data(Blackwell)
name.cand<-sort(unique(Blackwell$demName))
treat.hist<-matrix(NA,nr=length(unique(name.cands)),nc=length(unique(Blackwell$time)))
for(i in 1:length(unique(name.cands))) for(j in 1:length(unique(Blackwell$time))){
treat.hist[i,j]<-with(Blackwell, d.gone.neg[dbName==name.cands[i] & time==j])
}
treat.hist.fac<-apply(treat.hist,1,function(x) paste(x, collapse="*"))
cm.treat<-rowSums(treat.hist)

msm1<-CBMSM(d.gone.neg ~ d.gone.neg.l1 + d.gone.neg.l2 + d.neg.frac.l3 + camp.length +
camp.length + deminc + base.poll + as.factor(year) + base.und + office,
id = as.numeric(as.factor(Blackwell$demName)), time = Blackwell$time,
data = Blackwell, type = "MSM", twostep = TRUE, msm.variance = "approx",
time.vary = FALSE)
summary(lm(Blackwell$demprcnt[Blackwell$time==1] ~ treat.hist.fac,
weights=msm1$w[Blackwell$time==1]))
summary(lm(Blackwell$demprcnt[Blackwell$time==1] ~ cm.treat,
weights=msm1$w[Blackwell$time==1]))

## Example: Multiple Binary Treatments Administered at the Same Time
n<-200
k<-4
set.seed(1040)
x1<-cbind(1,matrix(rnorm(n*k),ncol=k))
betas.1<-betas.2<-betas.3<-c(2,4,4,-4,3)/5
probs.1<-probs.2<-probs.3<-1+exp(-X1 ##% betas.1))
treat.1<-rbinom(n=length(probs.1),size=1,probs.1)
treat.2<-rbinom(n=length(probs.2),size=1,probs.2)
treat.3<-rbinom(n=length(probs.3),size=1,probs.3)
treat<-c(treat.1,treat.2,treat.3)
x<-rbind(x1,x1,x1)
time<-c(rep(1,nrow(x1)),rep(2,nrow(x1)),rep(3,nrow(x1)))
id<-c(rep(1:nrow(x1),3))
y<-cbind(treat.1,treat.2,treat.3) ##% (2,2,2)+X1 ##% (-2,8,7,6,2) + rnorm(n, sd=5)
multibin1<-CBMSM(treat~X, id=id, time=time, type="MultiBin", twostep=TRUE)
summary(lm(y~-1+treat.1+treat.2+treat.3*X1, weights=multibin1$w))
## End(Not run)
```

Covariate Balancing Propensity Score (CBPS) Estimation
Description

CBPS estimates propensity scores such that both covariate balance and prediction of treatment assignment are maximized. The method, therefore, avoids an iterative process between model fitting and balance checking and implements both simultaneously. For cross-sectional data, the method can take continuous treatments and treatments with a control (baseline) condition and either 1, 2, or 3 distinct treatment conditions.

Usage

```r
CBPS(formula, data, na.action, ATT = NULL, method = "over",
      iterations = NULL, standardize = TRUE, twostep = TRUE, ...)
CBPS.fit(treat, X, ATT, X.bal = X, method, iterations,
         standardize, twostep, ...)
```

Arguments

- `formula` An object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- `data` An optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in `data`, the variables are taken from `environment(formula)`, typically the environment from which `cbps` is called.
- `na.action` A function which indicates what should happen when the data contain NAs. The default is set by the `na.action` setting of `options`, and is `na.fail` if that is unset.
- `ATT` Set to `TRUE` to find the average treatment effect on the treated, and `FALSE` to find the average treatment effect. Default is `TRUE`. For 3- and 4-valued treatments as well as continuous treatments, only the ATE is available.
- `treat` A vector of treatment assignments.
- `X` A covariate matrix.
- `X.bal` A matrix to be balanced.
- `method` Choose "over" to fit an over-identified model that combines the propensity score and covariate balancing conditions; choose "exact" to fit a model that only contains the covariate balancing conditions.
- `iterations` An optional parameter for the maximum number of iterations for the optimization. Default is 1000.
- `standardize` Default is `TRUE`, which gets inverse propensity score weights (IPW) as described in Hirano, Imbens, and Ridder (2003). Set to `FALSE` to return Horvitz-Thompson weights. Does not affect weights for continuous treatments.
- `twostep` Default is `TRUE` for a two-step estimator, which will run substantially faster than continuous-updating. Set to `FALSE` to use the continuous-updating estimator described by Imai and Ratkovic (2014).

Details

Fits covariate balancing propensity scores.
Value

- **coefficients**: A named vector of coefficients
- **sigmasq**: The sigma-squared value, for continuous treatments only.
- **residuals**: The working residuals from the final iteration of CBPS
- **fitted.values**: The fitted propensity score.
- **rank**: The numeric rank of the fitted model
- **family**: The family object used.
- **deviance**: Minus twice the log-likelihood of the CBPS fit. Will be lower than the maximum likelihood deviance.
- **weights**: The optimal weights. For the marginal structural model and MultiBins, returns a list in which stabilized ("stabilized") weights, unstabilized ("unstabilized") weights, and unconditional treatment probabilities ("unconditional") are all available. Weights are Horvitz-Thompson if standardize is set to FALSE, and IPW if standardize is set to TRUE.
- **y**: The treatment vector used
- **x**: The covariate matrix
- **model**: The model frame
- **converged**: Convergence value. Returned from the call to optim().
- **call**: The matched call
- **formula**: The formula supplied.
- **data**: The data argument.
- **J**: The J-statistic at convergence.
- **mle.J**: The J-statistic for the parameters from maximum likelihood estimation.
- **bal**: The balance loss at convergence.
- **mle.bal**: The balance loss for the parameters from maximum likelihood estimation.
- **df**: The degrees of freedom.
- **var**: The covariance matrix, evaluated numerically from optim().

Author(s)

Christian Fong, Marc Ratkovic, and Kosuke Imai; The CBPS function is based on the code for version 2.15.0 of the glm function implemented in the stats package, originally written by Simon Davies. This documentation is likewise modeled on the documentation for glm and borrows its language where the arguments and values are the same.

References

CBPS

See Also

summary.CBPS

Examples

```r
## Not run:
###
### Example: propensity score matching
###

## Load the LaLonde data
data(LaLonde)
## Estimate CBPS via logistic regression
fit <- CBPS(treat ~ age + educ + re75 + re74 + I(re75==0) + I(re74==0),
data = LaLonde, ATT = TRUE)
summary(fit)
## matching via MatchIt: one to one nearest neighbor with replacement
library(MatchIt)
m.out <- matchit(treat ~ fitted(fit), method = "nearest", data = LaLonde,
replace = TRUE)

### Example: propensity score weighting
###
## Simulation from Kang and Shafer (2007).
set.seed(123456)
n <- 500
X <- mvrnorm(n, mu = rep(0, 4), Sigma = diag(4))
prop <- 1 / (1 + exp(X[,1] - 0.5 * X[,2] + 0.25*X[,3] + 0.1 * X[,4]))
treat <- rbinom(n, 1, prop)

## Estimate CBPS with a misspecified model
X.mis <- cbind(exp(X[,1]/2), X[,2]*exp(X[,1]))^(-1)+10, (X[,1]*X[,3]/25+.6)^3,
(X[,2]+X[,4]+20)^2)
fit1 <- CBPS(treat ~ X.mis, ATT = FALSE)
summary(fit1)

## Horwitz-Thompson estimate
mean(treat*y/fit1$fitted.values)
## Inverse propensity score weighting
sum(treat*y/fit1$fitted.values)/sum(1/fit1$fitted.values)
rm(list=c("y","X","prop","treat","n","X.mis","fit1"))

### Example: Covariate Balancing Propensity Score - 3 Treatments
###
set.seed(1)
n<-1000
k<-3
X<-mvnorm(n,rep(0,k), Sigma=matrix(c(5,.5,.03,.5,1,-.27,.03,.27,1),3,3))
beta<-matrix(2*k,k,2)
```
LaLonde Data for Covariate Balancing Propensity Score

Description

This data set gives the outcomes as well as treatment assignments and covariates for the econometric evaluation of training programs in LaLonde (1986).

Usage

LaLonde

Format

A data frame consisting of 5 columns (including a treatment assignment vector) and 2787 observations.
Source
Data from the National Supported Work Study. A benchmark matching dataset. Columns consist of an indicator for whether the observed unit was in the experimental subset; an indicator for whether the individual received the treatment; age in years; schooling in years; indicators for black and Hispanic; an indicator for marriage status, one of married; an indicator for no high school degree; and reported earnings in 1974, 1975, and 1978. 1974 and 1975 earnings are pre-treatment. 1978 earnings is taken as the outcome variable.

References

Description
Plots the absolute difference in standardized means before and after weighting.

Usage
```r
## S3 method for class 'CBMSM'
plot(x, covars = NULL, silent = TRUE, ...)
```

Arguments
- `x` an object of class “CBMSM”.
- `covars` Indices of the covariates to be plotted (excluding the intercept). For example, if only the first two covariates from balance are desired, set `covars` to 1:2. The default is NULL, which plots all covariates.
- `silent` If set to FALSE, returns the absolute imbalance for each treatment history pair before and after weighting. This helps the user to create his or her own customized plot. Default is TRUE, which returns nothing.
- `...` Additional arguments to be passed to plot.

Details
Covariate balance is improved if the plot’s points are below the plotted line of y=x.

Value
The x-axis gives the imbalance for each covariate-treatment history pair without any weighting, and the y-axis gives the imbalance for each covariate-treatment history pair after CBMSM weighting. Imbalance is measured as the absolute difference in standardized means for the two treatment histories. Means are standardized by the standard deviation of the covariate in the full sample.
plot.CBPS

Author(s)
Marc Ratkovic and Christian Fong

See Also
CBMSM, plot

plot.CBPS

Plotting Covariate Balancing Propensity Score Estimation

Description
Plots the absolute difference in standardized means before and after weighting.

Usage
```r
## S3 method for class 'CBPS'
plot(x, covars = NULL, silent = TRUE,...)
```

Arguments
- `x`: an object of class “CBPS”, usually, a result of a call to CBPS.
- `covars`: Indices of the covariates to be plotted (excluding the intercept). For example, if only the first two covariates from balance are desired, set `covars` to 1:2. The default is NULL, which plots all covariates.
- `silent`: If set to FALSE, returns the absolute imbalance for each contrast pair before and after weighting. This helps the user to create his or her own customized plot. Default is TRUE, which returns nothing.
- `...`: Additional arguments to be passed to plot.

Details
The "Before Weighting" plot gives the balance before weighting, and the "After Weighting" plot gives the balance after weighting.

Value
For binary and multi-valued treatments, plots the absolute difference in standardized means by contrast for all covariates before and after weighting. For continuous treatments, plots the absolute Pearson correlation between the treatment and each covariate.

Author(s)
Christian Fong, Marc Ratkovic, and Kosuke Imai.

See Also
CBPS, plot
Description

Prints a summary of a fitted CBPS object.

Usage

```r
## S3 method for class 'CBPS'
summary(object,...)
```

Arguments

- `object`: an object of class “CBPS”, usually, a result of a call to CBPS.
- `...`: Additional arguments to be passed to `summary`.

Details

Prints a summary of a CBPS object, in a format similar to `glm`. The variance matrix is calculated from the numerical Hessian at convergence of CBPS.

Value

- `call`: The matched call.
- `deviance.residuals`: The five number summary and the mean of the deviance residuals.
- `coefficients`: A table including the estimate for each coefficient and the standard error, z-value, and two-sided p-value for these estimates.
- `J`: Hansen’s J-Statistic for the fitted model.
- `Log-Likelihood`: The log-likelihood of the fitted model.

Author(s)

Christian Fong, Marc Ratkovic, and Kosuke Imai.

See Also

CBPS, summary
vcov.CBPS Calculate Variance-Covariance Matrix for a Fitted CBPS Object

Description
vcov.CBPS Returns the variance-covariance matrix of the main parameters of a fitted CBPS object.

Usage

S3 method for class 'CBPS'
vcov(object,...)

Arguments

doect An object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted.

... Additional arguments to be passed to vcov.CBPS

Details
This is the CBPS implementation of the generic function vcov().

Value
A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.

Author(s)
Christian Fong, Marc Ratkovic, and Kosuke Imai.

References
This documentation is modeled on the documentation of the generic vcov.

See Also
vcov

Examples

Not run:
###
Example: Variance-Covariance Matrix
###

#Load the LaLonde data
data(LaLonde)
Estimate CBPS via logistic regression
```r
fit <- CBPS(treat ~ age + educ + re75 + re74 + I(re75==0) + I(re74==0),
            data = LaLonde, ATT = TRUE)
## Get the variance-covariance matrix.
vcov(fit)

## End(Not run)
```
Index

*Topic **datasets**
 Blackwell, 3
 LaLonde, 10

balance, 2
Blackwell, 3

CBMSM, 4, 12
CBPS, 6, 12, 13
LaLonde, 10

plot, 12
plot.CBMSM, 6, 11
plot.CBPS, 12
print.CBPS (CBPS), 6

summary, 13
summary.CBPS, 9, 13

vcov, 14
vcov.CBPS, 14