Package ‘BradleyTerry2’

February 19, 2015

Version 1.0-6
Date 2015-02-06
Title Bradley-Terry Models
Author Heather Turner and David Firth
Maintainer Heather Turner <ht@heatherturner.net>
URL http://bradleyterry2.r-forge.r-project.org
Description Specify and fit the Bradley-Terry model, including structured versions in which the parameters are related to explanatory variables through a linear predictor and versions with contest-specific effects, such as a home advantage.
Depends R (>= 2.10), lme4 (>= 1.0)
Imports brglm, gtools, stats
Suggests prefmod
Enhances gnm
License GPL (>= 2)
LazyData yes
NeedsCompilation no
Repository CRAN
Date/Publication 2015-02-09 01:15:34

R topics documented:

 add1.BTm 2
 anova.BTm 4
 baseball 5
 BTabilities 6
 BTm 8
 CEMS 11
 chameleons 14
 citations 16
 countsToBinomial 17
Add or Drop Single Terms to/from a Bradley Terry Model

Description

Add or drop single terms within the limit specified by the scope argument. For models with no random effects, compute an analysis of deviance table, otherwise compute the Wald statistic of the parameters that have been added to or dropped from the model.

Usage

```r
## S3 method for class 'BTm'
add1(object, scope, scale = 0,
     test = c("none", "Chisq", "F"), x = NULL, ...)

## S3 method for class 'BTm'
drop1(object, scope, scale = 0,
      test = c("none", "Chisq", "F"), ...)
```

Arguments

- **object**
 a fitted object of class inheriting from "BTm".
- **scope**
 a formula specifying the model including all terms to be considered for adding or dropping.
- **scale**
 an estimate of the dispersion. Not implemented for models with random effects.
- **test**
 should a p-value be returned? The F test is only appropriate for models with no random effects for which the dispersion has been estimated. The Chisq test is a likelihood ratio test for models with no random effects, otherwise a Wald test.
- **x**
 a model matrix containing columns for all terms in the scope. Useful if `add1` is to be called repeatedly. **Warning:** no checks are done on its validity.
- **...**
 further arguments passed to `add1.glm`.

Index

```
add1.BTm ..........................................................  18
flatlizards ..........................................................  18
football ............................................................  21
GenDavidson ..........................................................  22
glmmPQL ..............................................................  26
glmmPQL.control .....................................................  29
icehockey ............................................................  31
plotProportions .....................................................  33
predict.BTglmmPQL ..................................................  37
predict.BTm ..........................................................  39
residuals.BTm ........................................................  41
seeds .................................................................  42
sound.fields ..........................................................  43
springall .............................................................  45
```
Details

The hierarchy is respected when considering terms to be added or dropped: all main effects contained in a second-order interaction must remain, and so on.

In a scope formula "." means 'what is already there'.

For drop1, a missing scope is taken to mean that all terms in the model may be considered for dropping.

If scope includes player covariates and there are players with missing values over these covariates, then a separate ability will be estimated for these players in all fitted models. Similarly if there are missing values in any contest-level variables in scope, the corresponding contests will be omitted from all models.

If formula includes random effects, the same random effects structure will apply to all models.

Value

An object of class "anova" summarizing the differences in fit between the models.

Author(s)

Heather Turner

See Also

BTm, anova.BTm

Examples

attach(flatlizards)
result <- rep(1, nrow(contests))
BTmodel1 <- BTm(result, winner, loser,
 ~ throat.PC1[.] + throat.PC3[.] + (1|..),
 data = list(contests, predictors),
 tol = 1e-4, sigma = 2, trace = TRUE)

drop1(BTmodel1)

add1(BTmodel1, ~ . + head.length[.] + SVL[.], test = "Chisq")

BTmodel2 <- update(BTmodel1, formula = ~ . + head.length[.])

drop1(BTmodel2, test = "Chisq")
Description

Compare nested models inheriting from class "BTm". For models with no random effects, compute analysis of deviance table, otherwise compute Wald tests of additional terms.

Usage

```r
## S3 method for class 'BTm'
anova(object, ..., dispersion = NULL, test = NULL)
```

Arguments

- `object, ...`: a fitted object of class inheriting from "BTm", or a list of such objects.
- `dispersion`: a value for the dispersion. Not implemented for models with random effects.
- `test`: optional character string (partially) matching one of "Chisq", "F" or "Cp" to specify that p-values should be returned. The Chisq test is a likelihood ratio test for models with no random effects, otherwise a Wald test. Options "F" and "Cp" are only applicable to models with no random effects, see `stat.anova`.

Details

For models with no random effects, an analysis of deviance table is computed using `anova.glm`. Otherwise, Wald tests are computed as detailed here.

If a single object is specified, terms are added sequentially and a Wald statistic is computed for the extra parameters. If the full model includes player covariates and there are players with missing values over these covariates, then the NULL model will include a separate ability for these players. If there are missing values in any contest-level variables in the full model, the corresponding contests will be omitted throughout. The random effects structure of the full model is assumed for all sub-models.

For a list of objects, consecutive pairs of models are compared by computing a Wald statistic for the extra parameters in the larger of the two models.

The Wald statistic is always based on the variance-covariance matrix of the larger of the two models being compared.

Value

An object of class "anova" inheriting from class "data.frame".
Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset. This may be a problem if there are missing values and \(R \)'s default of `na.action = na.omit` is used. An error will be returned in this case.

The same problem will occur when separate abilities have been estimated for different subsets of players in the models being compared. However no warning is given in this case.

Author(s)

Heather Turner

See Also

`BTm`, `add1.BTm`

Examples

```r
attach(Flatlizards)
result <- rep(1, nrow(contests))
BTmodel <- BTm(result, winner, loser, ~ throat.PC1[...] + throat.PC3[...] +
               head.length[...] + (1|...), data = list(contests, predictors),
               trace = TRUE)
anova(BTmodel)
```

Description

Baseball results for games in the 1987 season between 7 teams in the Eastern Division of the American League.

Usage

baseball

Format

A data frame with 42 observations on the following 4 variables.

- `home.team` a factor with levels Baltimore, Boston, Cleveland, Detroit, Milwaukee, New York, Toronto.
- `away.team` a factor with levels Baltimore, Boston, Cleveland, Detroit, Milwaukee, New York, Toronto.
- `home.wins` a numeric vector.
- `away.wins` a numeric vector.
Note
This dataset is in a simpler format than the one described in Firth (2005).

Source

References

See Also
BTm

Examples
```r
## This reproduces the analysis in Sec 10.6 of Agresti (2002).

## Simple Bradley-Terry model, ignoring home advantage:
baseballModel1 <- BTm(cbind(home.wins, away.wins), home.team, away.team,
data = baseball, id = "team")

## Now incorporate the "home advantage" effect
baseball$home.team <- data.frame(team = baseball$home.team, at.home = 1)
baseball$away.team <- data.frame(team = baseball$away.team, at.home = 0)
baseballModel2 <- update(baseballModel1, formula = ~ team + at.home)

## Compare the fit of these two models:
anova(baseballModel1, baseballModel2)
```

BTtabilities

Estimated Abilities from a Bradley-Terry Model

Description
Computes the (baseline) ability of each player from a model object of class "BTm".

Usage
```
BTtabilities(model)
```

Arguments
- `model` a model object for which `inherits(model, "BTm")` is TRUE
Value

A two-column numeric matrix (of class \texttt{c(BTabilities, "matrix")), with columns named "ability" and "se": has one row for each player; has attributes named "vcov", "modelcall", "factorname" and (sometimes — see below) "separate". The first three attributes are not printed by the method \texttt{print.BTabilities}.

The player abilities are either directly estimated by the model, in which case the appropriate parameter estimates are returned, otherwise the abilities are computed from the terms of the fitted model that involve player covariates only (those indexed by \texttt{model$id} in the model formula). Thus parameters in any other terms are assumed to be zero.

If the abilities are structured according to a linear predictor, and if there are player covariates with missing values, the abilities for the corresponding players are estimated as separate parameters. In this event the resultant matrix has an attribute, named "separate", which identifies those players whose ability was estimated separately. For an example, see \texttt{flatlizards}.

Author(s)

David Firth and Heather Turner

References

See Also

\texttt{BTm, residuals.BTm}

Examples

citations example

```r
# Convert frequencies to success/failure data
citations.sf <- countsToBinomial(citations)
names(citations.sf)[1:2] <- c("journal1", "journal2")

# Fit the "standard" Bradley-Terry model
citeModel <- BTm(cbind(win1, win2), journal1, journal2, data = citations.sf)
BTabilities(citeModel)
```

baseball example

```r
baseball$home.team <- data.frame(team = baseball$home.team, at.home = 1)
baseball$away.team <- data.frame(team = baseball$away.team, at.home = 0)
baseballModel2 <- BTm(cbind(home.wins, away.wins), home.team, away.team,
                       formula = ~ team + at.home, id = "team",
data = baseball)

# Estimated abilities for each team, relative to Baltimore, when
# playing away from home:
BTabilities(baseballModel2)
```
Description

Fits Bradley-Terry models for pair comparison data, including models with structured scores, order effect and missing covariate data. Fits by either maximum likelihood or maximum penalized likelihood (with Jeffreys-prior penalty) when abilities are modelled exactly, or by penalized quasi-likelihood when abilities are modelled by covariates.

Usage

```
BTm(outcome, player1, player2, formula = NULL, id = "..", separate.ability = NULL, refcat = NULL, family = binomial, data = NULL, weights = NULL, subset = NULL, na.action = NULL, start = NULL, etastart = NULL, mustart = NULL, offset = NULL, br = FALSE, model = TRUE, x = FALSE, contrasts = NULL, ...)
```

Arguments

- **outcome**: the binomial response: either a numeric vector, a factor in which the first level denotes failure and all others success, or a two-column matrix with the columns giving the numbers of successes and failures.
- **player1**: either an ID factor specifying the first player in each contest, or a data.frame containing such a factor and possibly other contest-level variables that are specific to the first player. If given in a data.frame, the ID factor must have the name given in the `id` argument. If a factor is specified it will be used to create such a data.frame.
- **player2**: an object corresponding to that given in `player1` for the second player in each contest, with identical structure – in particular factors must have identical levels.
- **formula**: a formula with no left-hand-side, specifying the model for player ability. See details for more information.
- **id**: the name of the ID factor.
- **separate.ability** (if `formula` does not include the ID factor as a separate term) a character vector giving the names of players whose abilities are to be modelled individually rather than using the specification given by `formula`.
- **refcat** (if `formula` includes the ID factor as a separate term) a character specifying which player to use as a reference, with the first level of the ID factor as the default. Overrides any other contrast specification for the ID factor.
- **family**: a description of the error distribution and link function to be used in the model. Only the binomial family is implemented, with either “logit”, “probit”, or “cauchit” link. (See `family` for details of family functions.)
data an optional object providing data required by the model. This may be a single
data frame of contest-level data or a list of data frames. Names of data frames are
ignored unless they refer to data frames specified by player1 and player2. The
rows of data frames that do not contain contest-level data must correspond to
the levels of a factor used for indexing. Objects are searched for first in the data
object if provided, then in the environment of formula. If data is a list, the data
frames are searched in the order given.
weights an optional numeric vector of ‘prior weights’.
subset an optional logical or numeric vector specifying a subset of observations to be
used in the fitting process.
na.action a function which indicates what should happen when any contest-level variables
contain NAs. The default is the na.action setting of options. See details for
the handling of missing values in other variables.
start a vector of starting values for the fixed effects.
etastart a vector of starting values for the linear predictor.
mustart a vector of starting values for the vector of means.
ofset an optional offset term in the model. A vector of length equal to the number of
contests.
br logical. If TRUE fitting will be by penalized maximum likelihood as in Firth
(1992, 1993), using brglm, rather than maximum likelihood using glm, when
abilities are modelled exactly or when the abilities are modelled by covariates
and the variance of the random effects is estimated as zero.
model logical: whether or not to return the model frame.
x logical: whether or not to return the design matrix for the fixed effects.
contrasts an optional list specifying contrasts for the factors in formula. See the contrasts.arg
of model.matrix.
... other arguments for fitting function (currently either glm, brglm, or glmmPQL)

Details

In each comparison to be modelled there is a ‘first player’ and a ‘second player’ and it is assumed
that one player wins while the other loses (no allowance is made for tied comparisons).
The countsToBinomial function is provided to convert a contingency table of wins into a data
frame of wins and losses for each pair of players.
The formula argument specifies the model for player ability and applies to both the first player and
the second player in each contest. If NULL a separate ability is estimated for each player, equivalent
to setting formula = reformulate(id).
Contest-level variables can be specified in the formula in the usual manner, see formula. Player
covariates should be included as variables indexed by id, see examples. Thus player covariates
must be ordered according to the levels of the ID factor.
If formula includes player covariates and there are players with missing values over these covari-
ates, then a separate ability will be estimated for those players.
When player abilities are modelled by covariates, then random player effects should be added to the model. These should be specified in the formula using the vertical bar notation of `lmer`, see examples.

When specified, it is assumed that random player effects arise from a $N(0, \sigma^2)$ distribution and model parameters, including σ, are estimated using PQL (Breslow and Clayton, 1993) as implemented in the `glmmPQL` function.

Value

An object of class `c("BTm", "x")`, where "x" is the class of object returned by the model fitting function (e.g. `glm`). Components are as for objects of class "x", with additionally

- **id**: the id argument.
- **separate.ability**: the separate.ability argument.
- **refcat**: the refcat argument.
- **player1**: a data frame for the first player containing the ID factor and any player-specific contest-level variables.
- **player2**: a data frame corresponding to that for player1.
- **assign**: a numeric vector indicating which coefficients correspond to which terms in the model.
- **term.labels**: labels for the model terms.
- **random**: for models with random effects, the design matrix for the random effects.

Author(s)

Heather Turner, David Firth

References

See Also

`countsToBinomial, glmmPQL, BTabilities, residuals.BTm, add1.BTm, anova.BTm`
Examples

```r
# Statistics journal citation data from Stigler (1994)
# -- see also Agresti (2002, p448)
#
# Convert frequencies to success/failure data
# citations.sf <- countsToBinomial(citations)
# names(citations.sf)[1:2] <- c("journal1", "journal2")
#
# First fit the "standard" Bradley-Terry model
# citeModel <- BTm(cbind(win1, win2), journal1, journal2, data = citations.sf)
#
# Now the same thing with a different "reference" journal
# update(citeModel, refcat = "JASA")
#
# Now an example with an order effect -- see Agresti (2002) p438
#
# Simple Bradley-Terry model, ignoring home advantage:
# baseballModel1 <- BTm(cbind(home.wins, away.wins), home.team, away.team,
#                        data = baseball, id = "team")
#
# Now incorporate the "home advantage" effect
# baseball$home.team <- data.frame(team = baseball$home.team, at.home = 1)
# baseball$away.team <- data.frame(team = baseball$away.team, at.home = 0)
# baseballModel2 <- update(baseballModel1, formula = ~ team + at.home)
#
# Compare the fit of these two models:
# anova(baseballModel1, baseballModel2)
#
# For a more elaborate example with both player-level and contest-level
# predictor variables, see help(chameleons).
```

Description

Community of European management schools (CEMS) data as used in the paper by Dittrich et al. (1998, 2001), re-formatted for use with BTm

Usage

CEMS

Format

A list containing three data frames, \texttt{CEMS$preferences}, \texttt{CEMS$students} and \texttt{CEMS$schools}.

The \texttt{CEMS$preferences} data frame has 303 \times 15 = 4545 observations (15 possible comparisons, for each of 303 students) on the following 8 variables:

- \texttt{student} a factor with levels 1:303
- \texttt{school1} a factor with levels \texttt{c("Barcelona", "London", "Milano", "Paris", "St.Gallen", "Stockholm")}; the first management school in a comparison
- \texttt{school2} a factor with the same levels as \texttt{school1}; the second management school in a comparison
- \texttt{win1} integer (value 0 or 1) indicating whether \texttt{school1} was preferred to \texttt{school2}
- \texttt{win2} integer (value 0 or 1) indicating whether \texttt{school2} was preferred to \texttt{school1}
- \texttt{tied} integer (value 0 or 1) indicating whether no preference was expressed
- \texttt{win1.adj} numeric, equal to \texttt{win1 + tied/2}
- \texttt{win2.adj} numeric, equal to \texttt{win2 + tied/2}

The \texttt{CEMS$students} data frame has 303 observations (one for each student) on the following 8 variables:

- \texttt{STUD} a factor with levels \texttt{c("other", "commerce")}, the student’s main discipline of study
- \texttt{ENG} a factor with levels \texttt{c("good", "poor")}, indicating the student’s knowledge of English
- \texttt{FRA} a factor with levels \texttt{c("good", "poor")}, indicating the student’s knowledge of French
- \texttt{SPA} a factor with levels \texttt{c("good", "poor")}, indicating the student’s knowledge of Spanish
- \texttt{ITA} a factor with levels \texttt{c("good", "poor")}, indicating the student’s knowledge of Italian
- \texttt{WOR} a factor with levels \texttt{c("no", "yes")}, whether the student was in full-time employment while studying
- \texttt{DEG} a factor with levels \texttt{c("no", "yes")}, whether the student intended to take an international degree
- \texttt{SEX} a factor with levels \texttt{c("female", "male")}

The \texttt{CEMS$schools} data frame has 6 observations (one for each management school) on the following 7 variables:

- \texttt{Barcelona} numeric (value 0 or 1)
- \texttt{London} numeric (value 0 or 1)
- \texttt{Milano} numeric (value 0 or 1)
- \texttt{Paris} numeric (value 0 or 1)
- \texttt{St.Gallen} numeric (value 0 or 1)
- \texttt{Stockholm} numeric (value 0 or 1)
- \texttt{LAT} numeric (value 0 or 1) indicating a 'Latin' city

Details

The variables \texttt{win1.adj} and \texttt{win2.adj} are provided in order to allow a simple way of handling ties (in which a tie counts as half a win and half a loss), which is slightly different numerically from the Davidson (1970) method that is used by Dittrich et al. (1998): see the examples.
Author(s)
David Firth

Source

References

Examples
```r
## Fit the standard Bradley-Terry model, using the simple 'add 0.5'
## method to handle ties:
##
table3.model <- BTm(outcome = cbind(win1.adj, win2.adj),
                  player1 = school1, player2 = school2,
                  formula = ~ ..., refcat = "Stockholm",
                  data = CEMS)
## The results in Table 3 of Dittrich et al. (2001) are reproduced
## approximately by a simple re-scaling of the estimates:
table3 <- summary(table3.model)$coef[, 1:2]/1.75
print(table3)
##
## Now fit the 'final model' from Table 6 of Dittrich et al.:
##
table6.model <- BTm(outcome = cbind(win1.adj, win2.adj),
                  player1 = school1, player2 = school2,
                  formula = ~ . +
                  WOR[student] * Paris[...] +
                  WOR[student] * Milano[...] +
                  WOR[student] * Barcelona[...] +
                  DEG[student] * St.Gallen[...] +
                  STUD[student] * Paris[...] +
                  STUD[student] * St.Gallen[...] +
                  ENG[student] * St.Gallen[...] +
                  FRA[student] * London[...] +
                  FRA[student] * Paris[...] +
```

chameleons

Male Cape Dwarf Chameleons: Measured Traits and Contest Outcomes

Description

Data as used in the study by Stuart-Fox et al. (2006). Physical measurements made on 35 male Cape dwarf chameleons, and the results of 106 inter-male contests.
Usage

chameleons

Format

A list containing three data frames: chameleons$winner, chameleons$loser and chameleons$predictors.

The chameleons$winner and chameleons$loser data frames each have 106 observations (one per contest) on the following 4 variables:

ID a factor with 35 levels C01, C02, ... , C43, the identity of the winning (or losing) male in each contest
prev.wins.1 integer (values 0 or 1), did the winner/loser of this contest win in an immediately previous contest?
prev.wins.2 integer (values 0, 1 or 2), how many of his (maximum) previous 2 contests did each male win?
prev.wins.all integer, how many previous contests has each male won?

The chameleons$predictors data frame has 35 observations, one for each male involved in the contests, on the following 7 variables:

ch.res numeric, residuals of casque height regression on SVL, i.e. relative height of the bony part on the top of the chameleons’ heads
j1.res numeric, residuals of jaw length regression on SVL
t1.res numeric, residuals of tail length regression on SVL
mass.res numeric, residuals of body mass regression on SVL (body condition)
SVL numeric, snout-vent length (body size)
prop.main numeric, proportion (arcsin transformed) of area of the flank occupied by the main pink patch on the flank
prop.patch numeric, proportion (arcsin transformed) of area of the flank occupied by the entire flank patch

Details

The published paper mentions 107 contests, but only 106 contests are included here. Contest number 16 was deleted from the data used to fit the models, because it involved a male whose predictor-variables were incomplete (and it was the only contest involving that lizard, so it is uninformative).

Author(s)

David Firth
Source

The data were obtained by Dr Devi Stuart-Fox, http://www.zoology.unimelb.edu.au/research/groups/animal/labs/stuart-fox/index.php, and they are reproduced here with her kind permission.

These are the same data that were used in

Examples

```r
## Reproduce Table 3 from page 1268 of the above paper:
##
## summary(chameleon.model <- Bm(player1 = winner, player2 = loser,
##   formula = ~ prev.wins.2 + ch.res[ID] + prop.main[ID] + (1|ID), id = "ID",
##   data = chameleons))
##
## Note that, although a per-chameleon random effect is specified as in the
## above [the term "+ (1|ID)"]], the estimated variance for that random
## effect turns out to be zero in this case. The "prior experience"
## effect ["+ prev.wins.2"] in this analysis has explained most of the
## variation, leaving little for the ID-specific predictors to do.
## Despite that, two of the ID-specific predictors do emerge as
## significant.
##
## Test whether any of the other ID-specific predictors has an effect:
##
## add1(chameleon.model, - . + jl.res[ID] + tl.res[ID] + mass.res[ID] +
##   SVL[ID] + prop.patch[ID])
```

citations

Statistics Journal Citation Data from Stigler (1994)

Description

Usage

citations

Format

A 4 by 4 contingency table of citations, cross-classified by the factors cited and citing each with levels Biometrika, Comm Statist, JASA, and JRSS-B.
Details
In the context of paired comparisons, the ‘winner’ is the cited journal and the ‘loser’ is the one doing the citing.

Source

References

See Also
btm

Examples
```r
## Data as a square table, as in Agresti p448
citations

## Convert frequencies to success/failure data:
##
citations.sf <- countstobinomial(citations)
names(citations.sf)[1:2] <- c("journal1", "journal2")

## Standard Bradley-Terry model fitted to these data
citeModel <- Bt(cbind(win1, win2), journal1, journal2, data = citations.sf)
```

countstobinomial

Convert Contingency Table of Wins to Binomial Counts

Description
Convert a contingency table of wins to a four-column data frame containing the number of wins and losses for each pair of players.

Usage

`countstobinomial(xtab)`
Arguments

xtab a contingency table of wins cross-classified by “winner” and “loser”

Value

A data frame with four columns

player1 the first player in the contest.
player2 the second player in the contest.
win1 the number of times player1 won.
win2 the number of times player2 won.

Author(s)

Heather Turner

See Also

BTm

Examples

```
### Statistics journal citation data from Stigler (1994)
### -- see also Agresti (2002, p448)
###-----------------------------------------------
citations

### Convert frequencies to success/failure data
citations.sf <- countsToBinomial(citations)
names(citations.sf)[1:2] <- c("journal1", "journal2")
citations.sf
```

flatlizards Augrabies Male Flat Lizards: Contest Results and Predictor Variables

Description

Data collected at Augrabies Falls National Park (South Africa) in September-October 2002, on the contest performance and background attributes of 77 male flat lizards (*Platysaurus broadleyi*). The results of exactly 100 contests were recorded, along with various measurements made on each lizard. Full details of the study are in Whiting et al. (2006).

Usage

flatlizards
flatlizards

Format

This dataset is a list containing two data frames: flatlizards$contests and flatlizards$predictors. The flatlizards$contests data frame has 100 observations on the following 2 variables:

- winner: a factor with 77 levels lizard003 ... lizard189.
- loser: a factor with the same 77 levels lizard003 ... lizard189.

The flatlizards$predictors data frame has 77 observations (one for each of the 77 lizards) on the following 18 variables:

- id: factor with 77 levels (3 5 6 ... 189), the lizard identifiers.
- throat.PC1: numeric, the first principal component of the throat spectrum.
- throat.PC2: numeric, the second principal component of the throat spectrum.
- throat.PC3: numeric, the third principal component of the throat spectrum.
- frontleg.PC1: numeric, the first principal component of the front-leg spectrum.
- frontleg.PC2: numeric, the second principal component of the front-leg spectrum.
- frontleg.PC3: numeric, the third principal component of the front-leg spectrum.
- badge.PC1: numeric, the first principal component of the ventral colour patch spectrum.
- badge.PC2: numeric, the second principal component of the ventral colour patch spectrum.
- badge.PC3: numeric, the third principal component of the ventral colour patch spectrum.
- badge.size: numeric, a measure of the area of the ventral colour patch.
- testosterone: numeric, a measure of blood testosterone concentration.
- SVL: numeric, the snout-vent length of the lizard.
- head.length: numeric, head length.
- head.width: numeric, head width.
- head.height: numeric, head height.
- condition: numeric, a measure of body condition.
- repro.tactic: a factor indicating reproductive tactic; levels are resident and floater.

Details

There were no duplicate contests (no pair of lizards was seen fighting more than once), and there were no tied contests (the result of each contest was clear).

The variables head.length, head.width, head.height and condition were all computed as residuals (of directly measured head length, head width, head height and body mass index, respectively) from simple least-squares regressions on SVL.

Values of some predictors are missing (NA) for some lizards, ‘at random’, because of instrument problems unconnected with the value of the measurement being made.

Source

The data were collected by Dr Martin Whiting, http://whitinglab.com/?page_id=3380, and they appear here with his kind permission.
References

See Also

BTm

Examples

```r
attach(flatlizards)

## Fit the standard Bradley-Terry model, using the bias-reduced
## maximum likelihood method:
##
result <- rep(1, nrow(contests))
BTmodel <- BTm(result, winner, loser, br = TRUE, data = contests)
summary(BTmodel)

## That’s fairly useless, though, because of the rather small
## amount of data on each lizard. And really the scientific
## interest is not in the abilities of these particular 77
## lizards, but in the relationship between ability and the
## measured predictor variables.

## So next fit (by maximum likelihood) a “structured” B-T model in
## which abilities are determined by a linear predictor.

## This reproduces results reported in Table 1 of Whiting et al. (2006):

Whiting.model <- BTm(result, winner, loser, ~ throat.PC1[.] + throat.PC3[.] +
                           head.length[.] + SVL[.],
                           data = list(contests, predictors))
summary(Whiting.model)

## Equivalently, fit the same model using glmmPQL:

Whiting.model <- BTm(result, winner, loser, ~ throat.PC1[.] + throat.PC3[.] +
                           head.length[.] + SVL[.] + (1|.), sigma = 0,
                           sigma.fixed = TRUE, data = list(contests, predictors))
summary(Whiting.model)

## But that analysis assumes that the linear predictor formula for
## abilities is _perfect_, i.e., that there is no error in the linear
## predictor. This will always be unrealistic.

## So now fit the same predictor but with a normally distributed error
## term --- a generalized linear mixed model --- by using the BTm
## function instead of glm.
```
football

Whiting.model2 <- Bm(result, winner, loser, ~ throat.PC1[.] + throat.PC3[.] +
head.length[.] + SVL[.] + (1[.]),
data = list(contests, predictors), trace = TRUE)

summary(Whiting.model2)

The estimated coefficients (of throat.PC1, throat.PC3,
head.length and SVL are not changed substantially by
the recognition of an error term in the model; but the estimated
standard errors are larger, as expected. The main conclusions from
Whiting et al. (2006) are unaffected.

With the normally distributed random error included, it is perhaps
at least as natural to use probit rather than logit as the link
function:

Whiting.model3 <- Bm(result, winner, loser, ~ throat.PC1[.] + throat.PC3[.] +
head.length[.] + SVL[.] + (1[.]),
family = binomial(link = "probit"),
data = list(contests, predictors), trace = TRUE)

summary(Whiting.model3)

Note the "separate" attribute here, identifying two lizards with
missing values of at least one predictor variable

Modulo the usual scale change between logit and probit, the results
are (as expected) very similar to Whiting.model2.

football

English Premier League Football Results 2008/9 to 2012/13

Description

The win/lose/draw results for five seasons of the English Premier League football results, from 2008/9 to 2012/13

Usage

football

Format

A data frame with 1881 observations on the following 4 variables.

- **season**: a factor with levels 2008-9, 2009-10, 2010-11, 2011-12, 2012-13
- **home**: a factor specifying the home team, with 29 levels Ars (Arsenal), ..., Wol (Wolverhampton)
- **away**: a factor specifying the away team, with the same levels as home
- **result**: a numeric vector giving the result for the home team: 1 for a win, 0 for a draw, -1 for a loss.
Details

In each season, there are 20 teams, each of which plays one home game and one away game against all the other teams in the league. The results in 380 games per season.

Source

These data were downloaded from http://soccernet.espn.go.com in 2013. The site has since moved and the new site does not appear to have an equivalent source.

References

See Also

`gendavidson`

Examples

```r
### example requires gnm
if (require(gnm)) {
  ### convert to trinomial counts
  football.tri <- expandCategorical(football, "result", idvar = "match")
  head(football.tri)

  ### add variable to indicate whether team playing at home
  football.tri$at.home <- !logical(nrow(football.tri))

  ### fit Davidson model for ties
  ### - subset to first and last season for illustration
  davidson <- gnm(count ~
                   GenDavidson(result == 1, result == 0, result == -1,
                               home:season, away:season,
                               home.adv = -1, tie.max = -1,
                               at.home1 = at.home, at.home2 = !at.home) - 1,
                   eliminate = match, family = poisson, data = football.tri,
                   subset = season %in% c("2008-9", "2012-13"))

  ### see ?GenDavidson for further analysis
}
```

GenDavidson

Specify a Generalised Davidson Term in a gnm Model Formula

Description

GenDavidson is a function of class "nonlin" to specify a generalised Davidson term in the formula argument to `gnm`, providing a model for paired comparison data where ties are a possible outcome.
GenDavidson

Usage

GenDavidson(win, tie, loss, player1, player2, home.adv = NULL, tie.max = ~1, tie.mode = NULL, tie.scale = NULL, at.home1 = NULL, at.home2 = NULL)

Arguments

win a logical vector: TRUE if player1 wins, FALSE otherwise.
tie a logical vector: TRUE if the outcome is a tie, FALSE otherwise.
loss a logical vector: TRUE if player1 loses, FALSE otherwise.
player1 an ID factor specifying the first player in each contest, with the same set of levels as player2.
player2 an ID factor specifying the second player in each contest, with the same set of levels as player2.
home.adv a formula for the parameter corresponding to the home advantage effect. If NULL, no home advantage effect is estimated.
tie.max a formula for the parameter corresponding to the maximum tie probability.
tie.scale a formula for the parameter corresponding to the scale of dependence of the tie probability on the probability that player1 wins, given the outcome is not a draw.
tie.mode a formula for the parameter corresponding to the location of maximum tie probability, in terms of the probability that player1 wins, given the outcome is not a draw.
at.home1 a logical vector: TRUE if player1 is at home, FALSE otherwise.
at.home2 a logical vector: TRUE if player2 is at home, FALSE otherwise.

Details

GenDavidson specifies a generalisation of the Davidson model (1970) for paired comparisons where a tie is a possible outcome. It is designed for modelling trinomial counts corresponding to the win/draw/loss outcome for each contest, which are assumed Poisson conditional on the total count for each match. Since this total must be one, the expected counts are equivalently the probabilities for each possible outcome, which are modelled on the log scale:

\[\log(p(\text{beats}j)_k) = \theta_{ijk} + \log(\mu \alpha_i) \]
\[\log(p(\text{draw})_k) = \theta_{ijk} + \delta + c + \sigma (\pi \log(\mu \alpha_i) - (1 - \pi) \log(\alpha_j)) + (1 - \sigma)(\log(\mu \alpha_i + \alpha_j)) \]
\[\log(p(\text{beats}i)_k) = \theta_{ijk} + \log(\alpha_j) \]

Here \(\theta_{ijk} \) is a structural parameter to fix the trinomial totals; \(\mu \) is the home advantage parameter; \(\alpha_i \) and \(\alpha_j \) are the abilities of players \(i \) and \(j \) respectively; \(c \) is a function of the parameters such that \(\expit(\delta) \) is the maximum probability of a tie, \(\sigma \) scales the dependence of the probability of a tie on the relative abilities and \(\pi \) allows for asymmetry in this dependence.

For parameters that must be positive (\(\alpha_i, \sigma, \mu \)), the log is estimated, while for parameters that must be between zero and one (\(\delta, \pi \)), the logit is estimated, as illustrated in the example.
Value

A list with the anticipated components of a "nonlin" function:

- **predictors**: the formulae for the different parameters and the ID factors for player 1 and player 2.
- **variables**: the outcome variables and the "at home" variables, if specified.
- **common**: an index to specify that common effects are to be estimated for the players.
- **term**: a function to create a deparsed mathematical expression of the term, given labels for the predictors.
- **start**: a function to generate starting values for the parameters.

Author(s)

Heather Turner

References

See Also

- `football`
- `plotProportions`

Examples

```r
### example requires gnm
if (require(gnm)) {
  ### convert to trinomial counts
  football.tri <- expandCategorical(football, "result", idvar = "match")
  head(football.tri)

  ### add variable to indicate whether team playing at home
  football.tri$at.home <- !logical(nrow(football.tri))

  ### fit shifted & scaled Davidson model
  ### - subset to first and last season for illustration
  shifScalDav <- gnm(count ~
    GenDavidson(result == 1, result == 0, result == -1,
    home:season, away:season, home.adv = -1,
    tie.max = -1, tie.scale = -1, tie.mode = -1,
    at.home1 = at.home,
    at.home2 = !at.home) - 1,
    eliminate = match, family = poisson, data = football.tri,
    subset = season %in% c("2008-9", "2012-13"))

  ### look at coefs
  coef <- coef(shifScalDav)
  # home advantage
  exp(coef["home.adv"])
## R Code

```r
max p(tie)
plogis(coef("tie.max"))
mode p(tie)
plogis(coef("tie.mode"))
scale relative to Davidson of dependence of p(tie) on p(win|not a draw)
exp(coef("tie.scale"))

check model fit
alpha <- names(coef[-(1:4)])
plotProportions(result == 1, result == 0, result == -1,
 home:season, away:season,
 abilities = coef(alpha), home.adv = coef("home.adv"),
 tie.max = coef("tie.max"), tie.scale = coef("tie.scale"),
 tie.mode = coef("tie.mode"),
 at.home1 = at.home, at.home2 = !at.home,
 data = football.tri, subset = count == 1)

analyse all five seasons
- takes a little while to run, particularly likelihood ratio tests
Not run:
fit Davidson model
Dav <- glm(count ~ GenDavidson(result = 1, result = 0, result = -1,
 home:season, away:season, home.adv = -1,
 tie.max = -1,
 at.home1 = at.home,
 at.home2 = !at.home) - 1,
 eliminate = match, family = poisson, data = football.tri)

fit scaled Davidson model
scalDav <- glm(count ~ GenDavidson(result = 1, result = 0, result = -1,
 home:season, away:season, home.adv = -1,
 tie.max = -1, tie.scale = -1,
 at.home1 = at.home,
 at.home2 = !at.home) - 1,
 eliminate = match, family = poisson, data = football.tri)

fit shifted & scaled Davidson model
shifscalDav <- glm(count ~ GenDavidson(result = 1, result = 0, result = -1,
 home:season, away:season, home.adv = -1,
 tie.max = -1, tie.scale = -1, tie.mode = -1,
 at.home1 = at.home,
 at.home2 = !at.home) - 1,
 eliminate = match, family = poisson, data = football.tri)

compare models
anova(Dav, scalDav, shifscalDav, test = "Chisq")

diagnostic plots
main <- c("Davidson", "Scaled Davidson", "Shifted & Scaled Davidson")
mod <- list(Dav, scalDav, shifscalDav)
names(mod) <- main
```
## glmmPQL

### PQL Estimation of Generalized Linear Mixed Models

**Description**

Fits GLMMs with simple random effects structure via Breslow and Clayton's PQL algorithm.

**Usage**

```r
glmmPQL(fixed, random = NULL, family = binomial, data = NULL,
 subset = NULL, weights = NULL, offset = NULL, na.action = NULL,
 start = NULL, etastart = NULL, mustart = NULL,
 control = glmmPQL.control(...), sigma = 0.1,
 sigma.fixed = FALSE, model = TRUE, x = FALSE, contrasts = NULL,
 ...)```

Arguments

- `fixed` a formula for the fixed effects.
- `random` a design matrix for the random effects, with number of rows equal to the length of variables in `formula`.
- `family` a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See `family` for details of family functions.)
data: an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in `data`, the variables are taken from `environment(formula)`, typically the environment from which `glmmPQL` called.

subset: an optional logical or numeric vector specifying a subset of observations to be used in the fitting process.

weights: an optional vector of ‘prior weights’ to be used in the fitting process.

offset: an optional numeric vector to be added to the linear predictor during fitting. One or more `offset` terms can be included in the formula instead or as well, and if more than one is specified their sum is used. See `model.offset`.

na.action: a function which indicates what should happen when the data contain NAs. The default is set by the `na.action` setting of `options`, and is `na.fail` if that is unset.

start: starting values for the parameters in the linear predictor.

etastart: starting values for the linear predictor.

mustart: starting values for the vector of means.

control: a list of parameters for controlling the fitting process. See the `glmmPQL.control` for details.

sigma: a starting value for the standard deviation of the random effects.

sigma.fixed: logical: whether or not the standard deviation of the random effects should be fixed at its starting value.

model: logical: whether or not the model frame should be returned.

x: logical: whether or not the design matrix for the fixed effects should be returned.

contrasts: an optional list. See the `contrasts.arg` argument of `model.matrix`.

... arguments to be passed to `glmmPQL.control`.

Details

The GLMM is assumed to be of the form

\[g(\mu) = X\beta + Ze \]

where \(g \) is the link function, \(\mu \) is the vector of means and \(X, Z \) are design matrices for the fixed effects \(\beta \) and random effects \(e \) respectively. Furthermore the random effects are assumed to be i.i.d. \(N(0, \sigma^2) \).

Value

An object of class "BTglmmPQL" which inherits from "glm" and "lm":

- coefficients: a named vector of coefficients, with a "random" attribute giving the estimated random effects.
- residuals: the working residuals from the final iteration of the IWLS loop.
- random: the design matrix for the random effects.
fitted.values the fitted mean values, obtained by transforming the linear predictors by the inverse of the link function.

rank the numeric rank of the fitted linear model.

family the family object used.

linear.predictors the linear fit on link scale.

deviance up to a constant, minus twice the maximized log-likelihood.

aic a version of Akaike’s An Information Criterion, minus twice the maximized log-likelihood plus twice the number of parameters, computed by the aic component of the family.

null.deviance the deviance for the null model, comparable with deviance.

iter the number of iterations of the PQL algorithm.

weights the working weights, that is the weights in the final iteration of the IWLS loop.

prior.weights the weights initially supplied, a vector of 1’s if none were.

df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

y if requested (the default) the y vector used. (It is a vector even for a binomial model.)

x if requested, the model matrix.

model if requested (the default), the model frame.

converged logical. Was the PQL algorithm judged to have converged?

call the matched call.

formula the formula supplied.

terms the terms object used.

data the data argument used.

offset the offset vector used.

control the value of the control argument used.

contrasts (where relevant) the contrasts used.

xlevels (where relevant) a record of the levels of the factors used in fitting.

na.action (where relevant) information returned by model.frame on the special handling of NAs.

sigma the estimated standard deviation of the random effects

sigma.fixed logical: whether or not sigma was fixed

varFix the variance-covariance matrix of the fixed effects

varSigma the variance of sigma

Author(s)

Heather Turner
References

See Also

`predict.glmmPQL`, `glmmPQL.control`, `btm`

Examples

```r
Crowder seeds example from Breslow & Clayton
attach(seeds)
summary(glmmPQL(cbind(r, n - r) ~ seed + extract, 
    random = diag(length(r)), 
    family = binomial, data = seeds))

summary(glmmPQL(cbind(r, n - r) ~ seed*extract, 
    random = diag(length(r)), 
    family = binomial, data = seeds))
```

`glmmPQL.control`
Control Aspects of the glmmPQL Algorithm

Description

Set control variables for the glmmPQL algorithm.

Usage

```r
glmmPQL.control(maxiter = 50, IWLSiter = 10, tol = 1e-06, trace = FALSE)
```

Arguments

- `maxiter`
 the maximum number of outer iterations.
- `IWLSiter`
 the maximum number of iterated weighted least squares iterations used to estimate the fixed effects, given the standard deviation of the random effects.
- `tol`
 the tolerance used to determine convergence in the IWLS iterations and over all (see details).
- `trace`
 logical: whether or not to print the score for the random effects variance at the end of each iteration.
Details

This function provides an interface to control the PQL algorithm used by `btm` for fitting Bradley Terry models with random effects.

The algorithm iterates between a series of iterated weighted least squares iterations to update the fixed effects and a single Fisher scoring iteration to update the standard deviation of the random effects.

Convergence of both the inner and outer iterations are judged by comparing the squared components of the relevant score vector with corresponding elements of the diagonal of the Fisher information matrix. If, for all components of the relevant score vector, the ratio is less than `tolerance`^2, or the corresponding diagonal element of the Fisher information matrix is less than 1e-20, iterations cease.

Value

A list with the arguments as components.

Author(s)

Heather Turner

References

See Also

`glmmPQL`, `btm`

Examples

```r
## Variation on example(flatlizards)
attach(flatlizards)
result <- rep(1, nrow(contests))

## Btm passes arguments on to glmmPQL.control()
args(Bt)
BTmodel <- Bt(result, winner, loser, ~ throat.PC[...] + throat.PC[...] + head.length[...] + SVL[...] + (1|...),
    data = list(contests, predictors), tol = 1e-3, trace = TRUE)
summary(BTmodel)
```
Description

Game results from American College Hockey Men’s Division I composite schedule 2009-2010.

Usage

icehockey

Format

A data frame with 1083 observations on the following 6 variables.

date a numeric vector
visitor a factor with 58 levels Alaska Anchorage ... Yale
v_goals a numeric vector
opponent a factor with 58 levels Alaska Anchorage ... Yale
o_goals a numeric vector
conference a factor with levels AH, CC, CH, EC, HE, NC, WC
result a numeric vector: 1 if visitor won, 0.5 for a draw and 0 if visitor lost
home.ice a logical vector: 1 if opponent on home ice, 0 if game on neutral ground

Details

The Division I ice hockey teams are arranged in six conferences: Atlantic Hockey, Central Collegiate Hockey Association, College Hockey America, ECAC Hockey, Hockey East and the Western Collegiate Hockey Association, all part of the National Collegiate Athletic Association. The composite schedule includes within conference games and between conference games.

The data set here contains only games from the regular season, the results of which determine the teams that play in the NCAA national tournament. There are six automatic bids that go to the conference tournament champions, the remaining 10 teams are selected based upon ranking under the NCAA’s system of pairwise comparisons (http://www.collegehockeynews.com/info/?d=pwcrpi). Some have argued that Bradley-Terry rankings would be fairer (http://www.collegehockeynews.com/info/?d=krach).

Source

http://www.collegehockeystats.net/0910/schedules/men
References

http://www.collegehockeynews.com

Examples

```r
### Fit the standard Bradley-Terry model
standardBT <- BTm(outcome = result,
                  player1 = visitor, player2 = opponent,
                  id = "team", data = icehockey)

### Bradley-Terry abilities
abilities <- exp(BTabilities(standardBT)[,1])

### Compute round-robin winning probability and KRACH ratings
### (scaled abilities such that KRACH = 100 for a team with
### round-robin winning probability of 0.5)
rankings <- function(abilities)(
  probwin <- abilities/outer(abilities, abilities, "+")
  diag(probwin) <- 0
  nteams <- ncol(probwin)
  RRWP <- rowSums(probwin)/(ntems - 1)
  low <- quantile(abilities, 0.45)
  high <- quantile(abilities, 0.55)
  middling <- uniroot(function(x) (sum(x/(x+abilities)) - 0.5*ntems),
                        lower = low, upper = high)$root
  KRACH <- abilities/middling*100
  cbind(KRACH, RRWP)
)

ranks <- rankings(abilities)
## matches those produced by Joe Schlobohm’s Build Your Own Rankings
head(signif(ranks, 4)[order(ranks[,1], decreasing = TRUE),])

### At one point the NCAA rankings gave more credit for wins on
### neutral/opponent’s ground. Home ice effects are easily
### incorporated into the Bradley-Terry model, comparing teams
### on a "level playing field"
levelBT <- BTm(result,
               data.frame(team = visitor, home.ice = 0),
               data.frame(team = opponent, home.ice = home.ice),
               id = "team", data = icehockey)

abilities <- exp(BTabilities(levelBT)[,1])
ranks2 <- rankings(abilities)

## Look at movement between the two rankings
```
change <- factor(rank(ranks[,1]) - rank(ranks[,1]))
barplot(xtabs(~change), xlab = "Change in Rank", ylab = "No. Teams")

Take out regional winners and look at top 10

ranks <- ranks[!rownames(ranks) %in% regional]
ranks2 <- ranks2[!rownames(ranks2) %in% regional]

compare the 10 at-large selections under both rankings
with those selected under NCAA rankings
cbind(names(sort(ranks, decr = TRUE)[1:10]),
 names(sort(ranks2, decr = TRUE)[1:10]),
c("Miami", "Denver", "Wisconsin", "St. Cloud State",
 "Alaska", "Vermont")(quote

plotProportions

Plot Proportions of Tied Matches and Non-tied Matches Won

Description

Plot proportions of tied matches and non-tied matches won by the first player, within matches binned by the relative player ability, as expressed by the probability that the first player wins, given the match is not a tie. Add fitted lines for each set of matches, as given by the generalized Davidson model.

Usage

plotProportions(win, tie = NULL, loss, player1, player2, abilities = NULL,
 home.adv = NULL, tie.max = NULL, tie.scale = NULL, tie.mode = NULL,
 at.home1 = NULL, at.home2 = NULL, data = NULL, subset = NULL,
 bin.size = 20, xlab = "P(player1 wins | not a tie)",
 ylab = "Proportion", legend = NULL, col = 1:2, ...)

Arguments

win a logical vector: TRUE if player1 wins, FALSE otherwise.
tie a logical vector: TRUE if the outcome is a tie, FALSE otherwise (NULL if there are no ties).
loss a logical vector: TRUE if player1 loses, FALSE otherwise.
player1 an ID factor specifying the first player in each contest, with the same set of levels as player2.
player2 an ID factor specifying the second player in each contest, with the same set of levels as player2.
abilities the fitted abilities from a generalized Davidson model (or a Bradley-Terry model).
home.adv if applicable, the fitted home advantage parameter from a generalized Davidson
model (or a Bradley-Terry model).
tie.max the fitted parameter from a generalized Davidson model corresponding to the
maximum tie probability.
tie.scale if applicable, the fitted parameter from a generalized Davidson model corre-
sponding to the scale of dependence of the tie probability on the probability that
player1 wins, given the outcome is not a draw.
tie.mode if applicable, the fitted parameter from a generalized Davidson model corre-
sponding to the location of maximum tie probability, in terms of the probability
that player1 wins, given the outcome is not a draw.
at.home1 a logical vector: TRUE if player1 is at home, FALSE otherwise.
at.home2 a logical vector: TRUE if player2 is at home, FALSE otherwise.
data an optional data frame providing variables required by the model, with one ob-
servation per match.
subset an optional logical or numeric vector specifying a subset of observations to in-
clude in the plot.
bin.size the approximate number of matches in each bin.
xlab the label to use for the x-axis.
ylab the label to use for the y-axis.
legend text to use for the legend.
col a vector specifying colours to use for the proportion of non-tied matches won
and the proportion of tied matches.
... further arguments passed to plot.

Details

If home.adv is specified, the results are re-ordered if necessary so that the home player comes first;
any matches played on neutral ground are omitted.

First the probability that the first player wins given that the match is not a tie is computed:

\[
\text{expit}(\text{home.adv} + \text{abilities[player1]} - \text{abilities[player2]})
\]

where home.adv and abilities are parameters from a generalized Davidson model that have been
estimated on the log scale.

The matches are then binned according to this probability, grouping together matches with similar
relative ability between the first player and the second player. Within each bin, the proportion of
tied matches is computed and these proportions are plotted against the mid-point of the bin. Then
the bins are re-computed omitting the tied games and the proportion of non-tied matches won by
the first player is found and plotted against the new mid-point.

Finally curves are added for the probability of a tie and the conditional probability of win given the
match is not a tie, under a generalized Davidson model with parameters as specified by tie.max,
tie.scale and tie.mode.

The function can also be used to plot the proportions of wins along with the fitted probability of a
win under the Bradley-Terry model.
Value

A list of data frames:

- `win`: a data frame comprising `prop.win`, the proportion of non-tied matches won by the first player in each bin and `bin.win`, the mid-point of each bin.

- `tie`: (when ties are present) a data frame comprising `prop.tie`, the proportion of tied matches in each bin and `bin.tie`, the mid-point of each bin.

Note

This function is designed for single match outcomes, therefore data aggregated over player pairs will need to be expanded.

Author(s)

Heather Turner

See Also

`GenDavidson`, `BTm`

Examples

A Bradley-Terry example using icehockey data

```r
### Fit the standard Bradley-Terry model, ignoring home advantage
standardBT <- BTm(outcome = result,
                   player1 = visitor, player2 = opponent,
                   id = "team", data = icehockey)

### comparing teams on a "level playing field"
levelBT <- BTm(result,
               data.frame(team = visitor, home.ice = 0),
               data.frame(team = opponent, home.ice = home.ice),
               home + home.ice,
               id = "team", data = icehockey)

### compare fit to observed proportion won
### exclude tied matches as not explicitly modelled here
par(mfrow = c(1, 2))
plotProportions(win = result == 1, loss = result == 0,
                player1 = visitor, player2 = opponent,
                abilities = BTabilities(standardBT)[,1],
                data = icehockey, subset = result != 0.5,
                main = "Without home advantage")

plotProportions(win = result == 1, loss = result == 0,
                player1 = visitor, player2 = opponent,
                home.adv = coef(levelBT)["home.ice"],
                at.home1 = 0, at.home2 = home.ice,
                abilities = BTabilities(levelBT)[,1],
                main = "With home advantage")
```
data = icehockey, subset = result != 0.5,
main = "With home advantage")

A generalized Davidson example using football data
if (require(gnm)) {
 ## subset to first and last season for illustration
 football <- subset(football, season %in% c("2008-9", "2012-13"))

 ## convert to trinomial counts
 football.tri <- expandCategorical(football, "result", idvar = "match")

 ## add variable to indicate whether team playing at home
 football.tri$at.home <- !logical(nrow(football.tri))

 ## fit Davidson model
 Dav <- gnm(count ~ GenDavidson(result == 1, result == 0, result == -1,
 home:season, away:season, home.adv = -1,
 tie.max = -1,
 at.home1 = at.home,
 at.home2 = !at.home) - 1,
 eliminate = match, family = poisson, data = football.tri)

 ## fit shifted & scaled Davidson model
 shifScalDav <- gnm(count ~
 GenDavidson(result == 1, result == 0, result == -1,
 home:season, away:season, home.adv = -1,
 tie.max = -1, tie.scale = -1, tie.mode = -1,
 at.home1 = at.home,
 at.home2 = !at.home) - 1,
 eliminate = match, family = poisson, data = football.tri)

 ## diagnostic plots
 main <- c("Davidson", "Shifted & Scaled Davidson")
 mod <- list(Dav, shifScalDav)
 names(mod) <- main
 alpha <- names(coef(Dav)[-c(1:2)])

 ## use football.tri data so that at.home can be found,
 ## but restrict to actual match results
 par(mfrow = c(1, 2))
 for (i in 1:2) {
 coef <- parameters(mod[[i]])
 plotProportions(result == 1, result == 0, result == -1,
 home:season, away:season,
 abilities = coef[alpha],
 home.adv = coef["home.adv"],
 tie.max = coef["tie.max"],
 tie.scale = coef["tie.scale"],
 tie.mode = coef["tie.mode"],
 at.home1 = at.home,
 at.home2 = !at.home,
 main = main[i],
 main = main[i])}
predict.BTglmPQL

predict.BTglmPQL Predict Method for BTglmPQL Objects

Description

Obtain predictions and optionally standard errors of those predictions from a "BTglmPQL" object.

Usage

```r
## S3 method for class 'BTglmPQL'
predict(object, newdata = NULL, newrandom = NULL,
  level = 1, type = c("link", "response", "terms"), se.fit = FALSE,
  terms = NULL, na.action = na.pass, ...)
```

Arguments

- `object`: a fitted object of class "BTglmPQL"
- `newdata`: (optional) a data frame in which to look for variables with which to predict. If omitted, the fitted linear predictors are used.
- `newrandom`: if `newdata` is provided, a corresponding design matrix for the random effects, will columns corresponding to the random effects estimated in the original model.
- `level`: an integer vector giving the level(s) at which predictions are required. Level zero corresponds to population-level predictions (fixed effects only), whilst level one corresponds to the individual-level predictions (full model) which are NA for contests involving individuals not in the original data.
- `type`: the type of prediction required. The default is on the scale of the linear predictors; the alternative "response" is on the scale of the response variable. Thus for a default binomial model the default predictions are of log-odds (probabilities on logit scale) and type = "response" gives the predicted probabilities. The "terms" option returns a matrix giving the fitted values of each term in the model formula on the linear predictor scale (fixed effects only).
- `se.fit`: logical switch indicating if standard errors are required.
- `terms`: with type ="terms" by default all terms are returned. A character vector specifies which terms are to be returned.
- `na.action`: function determining what should be done with missing values in `newdata`. The default is to predict NA.
- `...`: further arguments passed to or from other methods.
Details

If `newdata` is omitted the predictions are based on the data used for the fit. In that case how cases with missing values in the original fit are treated is determined by the `na.action` argument of that fit. If `na.action = na.omit` omitted cases will not appear in the residuals, whereas if `na.action = na.exclude` they will appear (in predictions and standard errors), with residual value NA. See also `napredict`.

Standard errors for the predictions are approximated assuming the variance of the random effects is known, see Booth and Hobert (1998).

Value

If `se.fit = FALSE`, a vector or matrix of predictions. If `se = TRUE`, a list with components

- `fit`: Predictions
- `se.fit`: Estimated standard errors

Author(s)

Heather Turner

References

See Also

`predict.glm`, `predict.BTm`

Examples

```r
attach(seeds)

seedsModel <- glmmPQL(cbind(r, n - r) ~ seed + extract,
    random = diag(length(r)),
    family = binomial)

pred <- predict(seedsModel, level = 0)
predTerms <- predict(seedsModel, type = "terms")

all.equal(pred, rowSums(predTerms) + attr(predTerms, "constant"))
```
predict.BTm

Predict Method for Bradley-Terry Models

Description

Obtain predictions and optionally standard errors of those predictions from a fitted Bradley-Terry model.

Usage

```r
## S3 method for class 'BTm'
predict(object, newdata = NULL, level = 1,
       type = c("link", "response", "terms"), se.fit = FALSE,
       dispersion = NULL, terms = NULL, na.action = na.pass, ...)
```

Arguments

- `object`: a fitted object of class "BTm"
- `newdata`: (optional) a data frame in which to look for variables with which to predict. If omitted, the fitted linear predictors are used.
- `level`: for models with random effects: an integer vector giving the level(s) at which predictions are required. Level zero corresponds to population-level predictions (fixed effects only), whilst level one corresponds to the player-level predictions (full model) which are NA for contests involving players not in the original data.
- `type`: the type of prediction required. The default is on the scale of the linear predictors; the alternative "response" is on the scale of the response variable. Thus for a default Bradley-Terry model the default predictions are of log-odds (probabilities on logit scale) and `type = "response"` gives the predicted probabilities. The "terms" option returns a matrix giving the fitted values of each term in the model formula on the linear predictor scale (fixed effects only).
- `se.fit`: logical switch indicating if standard errors are required.
- `dispersion`: a value for the dispersion, not used for models with random effects. If omitted, that returned by `summary` applied to the object is used, where applicable.
- `terms`: with `type = "terms"` by default all terms are returned. A character vector specifies which terms are to be returned.
- `na.action`: function determining what should be done with missing values in `newdata`. The default is to predict NA.
- `...`: further arguments passed to or from other methods.
Details
If newdata is omitted the predictions are based on the data used for the fit. In that case how cases
with missing values in the original fit are treated is determined by the na.action argument of that
fit. If na.action = na.omit omitted cases will not appear in the residuals, whereas if na.action =
na.exclude they will appear (in predictions and standard errors), with residual value NA. See also
napredict.

Value
If se.fit = FALSE, a vector or matrix of predictions. If se = TRUE, a list with components

- fit: Predictions
- se.fit: Estimated standard errors

Author(s)
Heather Turner

See Also
predict.glm, predict.glmmPQL

Examples
```r
## The final model in example(flatlizards)
attach(flatlizards)
Whiting.model3 <- BTm(1, winner, loser, ~ throat.PC1[.] + throat.PC3[.] +
head.length[.] + SVL[.] + (1|.),
family = binomial(link = "probit"),
data = list(contests, predictors), trace = TRUE)

## 'new' data for contests between four of the original lizards
## factor levels must correspond to original levels, but unused levels
## can be dropped - levels must match rows of predictors
newdata <- list(contests = data.frame(
  winner = factor(c("lizard048", "lizard060"),
  levels = c("lizard048", "lizard060", "lizard011")),
  loser = factor(c("lizard006", "lizard011"),
  levels = c("lizard006", "lizard011", "lizard048", "lizard060"))
),
predictors = predictors[c(3, 6, 27, 33), ])
predict(Whiting.model3, level = 1, newdata = newdata)

## same as
predict(Whiting.model3, level = 1)[1:2]

## introducing a new lizard
newpred <- rbind(predictors[c(3, 6, 27),
  c("throat.PC1","throat.PC3", "SVL", "head.length")],
  c(-5, 1.5, 1, 0.1))
```
Computes residuals from a model object of class "BTm". In addition to the usual options for objects inheriting from class "glm", a "grouped" option is implemented to compute player-specific residuals suitable for diagnostic checking of a predictor involving player-level covariates.

Usage

```r
## S3 method for class 'BTm'
residuals(object, type = c("deviance", "pearson", "working", "response", "partial", "grouped"), by = object$id, 
...)
```

Arguments

- `object`: a model object for which `inherits(model, "BTm")` is TRUE.
- `type`: the type of residuals which should be returned. The alternatives are: "deviance" (default), "pearson", "working", "response", and "partial".
- `by`: the grouping factor to use when `type = "grouped"`.
- `...`: arguments to pass on other methods.

Details

For `type` other than "grouped" see `residuals.glm`.

For `type = "grouped"` the residuals returned are weighted means of working residuals, with weights equal to the binomial denominators in the fitted model. These are suitable for diagnostic model checking, for example plotting against candidate predictors.

Value

A numeric vector of length equal to the number of players, with a "weights" attribute.
seeds

Seed Germination Data from Crowder (1978)

Description

Data from Crowder(1978) giving the proportion of seeds germinated for 21 plates that were arranged according to a 2x2 factorial layout by seed variety and type of root extract.

Usage

seeds
Format

A data frame with 21 observations on the following 4 variables.

\n\n- \(r \) the number of germinated seeds.
- \(n \) the total number of seeds.
- \(\text{seed} \) the seed variety.
- \(\text{extract} \) the type of root extract.

Source

References

See Also

glmPQL

Examples

attach(seeds)

summary(glmPQL(cbind(r, n - r) ~ seed + extract,
random = diag(length(r)),
family = binomial))

sound.fields

Kousgaard (1984) Data on Pair Comparisons of Sound Fields

Description

The results of a series of factorial subjective room acoustic experiments carried out at the Technical University of Denmark by A C Gade.

Usage

sound.fields
Format

A list containing two data frames, `sound.fields$comparisons`, and `sound.fields$design`.

The `sound.fields$comparisons` data frame has 84 observations on the following 8 variables:

- `field1` a factor with levels `c("000", "001", "010", "011", "100", "101", "110", "111")`, the first sound field in a comparison
- `field2` a factor with the same levels as `field1`; the second sound field in a comparison
- `win1` integer, the number of times that `field1` was preferred to `field2`
- `tie` integer, the number of times that no preference was expressed when comparing `field1` and `field2`
- `win2` integer, the number of times that `field2` was preferred to `field1`
- `win1.adj` numeric, equal to `win1 + tie/2`
- `win2.adj` numeric, equal to `win2 + tie/2`
- `instrument` a factor with 3 levels, `c("cello", "flute", "violin")`

The `sound.fields$design` data frame has 8 observations (one for each of the sound fields compared in the experiment) on the following 3 variables:

- `a` a factor with levels `c("0", "1")`, the direct sound factor (0 for obstructed sight line, 1 for free sight line); contrasts are sum contrasts
- `b` a factor with levels `c("0", "1")`, the reflection factor (0 for -26dB, 1 for -20dB); contrasts are sum contrasts
- `c` a factor with levels `c("0", "1")`, the reverberation factor (0 for -24dB, 1 for -20dB); contrasts are sum contrasts

Details

The variables `win1.adj` and `win2.adj` are provided in order to allow a simple way of handling ties (in which a tie counts as half a win and half a loss), which is slightly different numerically from the Davidson (1970) method that is used by Kousgaard (1984): see the examples.

Author(s)

David Firth

Source

References

Examples

```r
## Fit the Bradley-Terry model to data for flutes, using the simple 'add 0.5' method to handle ties:
##
flutes.model <- BTm(cbind(win1.adj, win2.adj), field1, field2, - field,
                   id = "field",
                   subset = (instrument == "flute"),
                   data = sound.fields)

## This agrees (after re-scaling) quite closely with the estimates given in Table 3 of Kousgaard (1984):
##
table3.flutes <- c(-0.581, -1.039, 0.347, 0.205, 0.276, 0.347, 0.311, 0.135)
plot(c(0, coef(flutes.model)), table3.flutes)
abline(lm(table3.flutes ~ c(0, coef(flutes.model))))

## Now re-parameterise that model in terms of the factorial effects, as in Table 5 of Kousgaard (1984):
##
flutes.model.reparam <- update(flutes.model,
                               formula = ~ a[field] * b[field] * c[field]
)
table5.flutes <- c(.267, .250, -.088, -.294, .062, .009, -.070)
plot(coef(flutes.model.reparam), table5.flutes)
abline(lm(table5.flutes ~ coef(flutes.model.reparam)))
```

Description

Data from Section 7 of the paper by Springall (1973) on Bradley-Terry response surface modelling. An experiment to assess the effects of gel and flavour concentrations on the subjective assessment of flavour strength by pair comparisons.

Usage

```r
springall
```

Format

A list containing two data frames, `springall$contests` and `springall$predictors`. The `springall$contests` data frame has 36 observations (one for each possible pairwise comparison of the 9 treatments) on the following 7 variables:

- `row` a factor with levels 1:9, the row number in Springall’s dataset
- `col` a factor with levels 1:9, the column number in Springall’s dataset

- Springall (1973) Data on Subjective Evaluation of Flavour Strength

- Description

- Usage

- Format
win integer, the number of wins for column treatment over row treatment
loss integer, the number of wins for row treatment over column treatment
tie integer, the number of ties between row and column treatments
win.adj numeric, equal to win + tie/2
loss.adj numeric, equal to loss + tie/2

The predictors data frame has 9 observations (one for each treatment) on the following 5 variables:
flav numeric, the flavour concentration
gel numeric, the gel concentration
flav.2 numeric, equal to flav^2
gel.2 numeric, equal to gel^2
flav.gel numeric, equal to flav * gel

Details
The variables win.adj and loss.adj are provided in order to allow a simple way of handling ties
(in which a tie counts as half a win and half a loss), which is slightly different numerically from the

Author(s)
David Firth

Source
Springall, A (1973) Response surface fitting using a generalization of the Bradley-Terry paired

References

Examples
```r
## Fit the same response-surface model as in section 7 of
## Springall (1973).
##
## Differences from Springall's fit are minor, arising from the
## different treatment of ties.
##
## Springall's model in the paper does not include the random effect.
## In this instance, however, that makes no difference: the random-effect
## variance is estimated as zero.
##
## summary(springall.model <- BTm(cbind(win.adj, loss.adj), col, row,
```
- flav[...] + gel[...] +
 flav.2[...] + gel.2[...] + flav.gel[...] +
 (1 | ...),
 data = springall))
Index

*Topic **datasets**
 baseball, 5
 CEMS, 11
 chameleons, 14
 citations, 16
 flatlizards, 18
 football, 21
 icehockey, 31
 seeds, 42
 sound.fields, 43
 springall, 45

*Topic **models**
 add1.Bm, 2
 anova.Bm, 4
 BTabilities, 6
 Bm, 8
 countsToBinomial, 17
 GenDavidson, 22
 glm, 9
 glmPQL, 9, 10, 26, 30, 43
 glmPQL.control, 27, 29, 29
 gnm, 22
 icehockey, 31
 lmer, 10
 model.matrix, 9, 27
 model.offset, 27
 na.fail, 27
 options, 27
 plotProportions, 24, 33
 predict.BTglmPQL, 29, 37
 predict.Bm, 38, 39
 predict.glm, 38, 40
 predict.glmmPQL, 40
 print.BTabilities (BTabilities), 6
 residuals.Bm, 7, 10, 41
 residuals.glm, 41
 seeds, 42
 sound.fields, 43
 springall, 45

chameleons, 14
coefficients.BTabilities (BTabilities), 6
countsToBinomial, 9, 10, 17
drop1.Bm (add1.Bm), 2
family, 8, 26
flatlizards, 7, 18
football, 21, 24
formula, 9
GenDavidson, 22, 22, 35
glm, 9
glmPQL, 9, 10, 26, 30, 43
glmPQL.control, 27, 29, 29
gnm, 22
INDEX

stat.anova, 4

vcov.BTabilities (BTabilities), 6