Package ‘AID’

February 19, 2015

Type Package
Title An R Package to Estimate Box-Cox Power Transformation Parameter
Version 1.4
Date 2014-01-21
Depends MASS, tseries, nortest, stats
Author Osman Dag, Ozgur Asar, Ozlem Ilk
Maintainer Osman Dag <osman.dag@metu.edu.tr>
Description Includes a function to estimate the power transformation parameter and some datasets
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2014-01-21 15:17:05

R topics documented:

AID ... 1
boxcoxcnc ... 2
grades ... 3
textile .. 4

Index

AID

An R Package to Estimate Box-Cox Power Transformation Parameter

Description

Includes a function to estimate the power transformation parameter and some datasets

Details

1
boxcoxnc

A Function to Estimate Box-Cox Power Transformation Parameter via Normality Tests and Artificial Covariate Method

Description

boxcoxnc utilizes seven different normality tests and artificial covariate method to estimate Box-Cox power transformation parameter and provides graphical analysis.

Usage

boxcoxnc(data, method="all", lam=seq(-2,2,0.01), plotit=TRUE, rep=30, p.method="BY")

Arguments

data is a vector, matrix for univariate dataset

method expects a character string to select the desired method to be used to estimate Box-Cox transformation parameter. To use Shapiro-Wilk test method should be set to "sw". For method = "ad", boxcoxnc function uses Anderson-Darling test to estimate Box-Cox transformation parameter. Similarly, method should be set to "cvm", "pt", "sf", "lt", "jb", "ac" to use Cramer-von Mises, Pearson Chi-square, Shapiro-Francia, Lilliefors, Jarque-Bera tests and artificial covariate method, respectively. To use all the methods at the same time, default is set to method = "all".

lam is a vector which includes the sequence of candidate lambda values. Default is set to (-2,2) with increment 0.01

plotit plots normality test statistic vs lambda for methods utilizing normality tests. It also plots log-likelihood vs lambda for artificial covariate method. Default is set to TRUE

rep is an integer which denotes the replication number for artificial covariate method. Default is set to 30

p.method expects a character string which defines the method to adjust the p-values. Default is set to "BY". p.method is same with the "method" in p.adjust documentation. See the documentation of p.adjust for other possible choices of methods and details.
grades

Value

Returns a matrix of output with the results of seven different normality tests and artificial covariate method. The first row of the matrix corresponds to the related estimates of lambda. The subsequent rows correspond to the p-values of different normality tests for each estimates of lambda.

Note

This is the version 1.4 of this user documentation file.

Author(s)

Osman Dag, Ozgur Asar, Ozlem Ilk

References

Examples

data(textile)
boxcoxnc(textile[,1])
boxcoxnc(textile[,1])$result[1,1]

grades

Student Grades Data

Description

Overall student grades for a class taught by Dr. Ozlem Ilk

Usage

data(grades)
Format

A data frame with 42 observations on the following variable.

grades a numeric vector for the student grades

Examples

data(grades)
hist(grades[,1])
boxcoxnc(grades[,1])

textile Textile Data

Description

Number of Cycles to Failure of Worsted Yarn

Usage

data(textile)

Format

A data frame with 27 observations on the following variable.

textile a numeric vector for the number of cycles

References

Examples

data(textile)
hist(textile[,1])
boxcoxnc(textile[,1])
Index

*Topic **datasets**
 grades, 3
 textile, 4
*Topic **power transformation**
 boxcoxnec, 2

AID, 1

boxcoxnec, 2

grades, 3

textile, 4